一、强夯法有效加固深度的计算方法与对比分析(论文文献综述)
董炳寅,水伟厚,秦劭杰[1](2022)在《中国强夯40年之技术创新》文中指出强夯法是一种经济高效、节能环保的地基处理方法。强夯法加固地基可提高地基强度、降低压缩性、消除湿陷性、提高抗液化能力。我国自1975年开始介绍并引进强夯技术,1978年左右开始真正工程实践,距今已有40年。这40年中我国工程界先后将强夯技术应用于山区高填方、围海造地等场地形成后的地基处理和湿陷性黄土、淤积土、砂土、粉质黏土等原地基处理,取得了良好的加固效果,具有明显的社会效益和经济效益。同时,工程建设中的山区高填方地基、开山块石回填地基、炸山填海、吹砂填海等工程也越来越多,需要加固处理的填土厚度也越来越大,为了能经济高效地处理这些具有复杂地质条件的场地,强夯加固技术向高能级和多元化发展。本文从强夯加固理论、高能级强夯技术、复合强夯加固技术三方面梳理了我国强夯工程实践和研究现状,在此基础上提出了对强夯技术的发展展望。
秦志光[2](2021)在《珊瑚礁砂地震液化特性与抗液化处理方法研究》文中提出珊瑚礁砂是由珊瑚礁岩体等经侵蚀、破碎并沉积的生物碎屑,与学术界所谓的钙质砂存在一定的差异。于工程所在地疏浚珊瑚礁岩土作为工程地基或基础,往往取材方便,可大幅降低建设成本并有效缩短工期。近年来我国企业在“一带一路”海上丝绸之路沿线海洋国家承担了越来越多的珊瑚礁砂吹填土工程建设。珊瑚礁砂全球分布广泛,遭受地震灾害的可能性较高,历史有记录以来地震过程中曾出现多次珊瑚礁砂土场地液化现象,并造成了严重的液化地质灾害与工程灾害。然而,目前关于珊瑚礁砂的液化可能性存在较大的争议,认为珊瑚礁砂场地不会液化或较难液化,珊瑚礁砂的液化特性尚没有研究清楚。另外,珊瑚礁砂场地较难液化并不等于不会液化,由于缺乏理论支持,工程实际中往往需要采取较高的抗液化地基处理措施,但是采用何种抗液化处理措施、如何评价抗液化处理效果,目前缺乏针对珊瑚礁砂地基的液化评价标准、填土地基形成及地基处理相关技术标准,若依据基于陆源砂的技术手段与方法,很可能低估珊瑚礁砂的抗液化能力,造成极大的浪费。本文对珊瑚礁砂开展动三轴试验、渗透试验、体积变形试验,分析珊瑚礁砂的抗液化强度、孔压增长与消散特征,探索密实法、排水法等抗液化地基处理措施的可行性、有效性、可靠性,建立基于原位测试指标的珊瑚礁砂地基液化评价方法与标准。论文主要完成了以下工作:(1)开展珊瑚礁砂动三轴试验,针对较普遍存在的动应力衰减现象进而容易给出明显高于实际抗液化强度的结果,根据等效循环振次的内涵与原理提出对实测振次进行校正的方法,分析级配、有效围压、固结比、相对密度以及橡皮膜嵌入效应等对珊瑚礁砂的抗液化强度的影响,为构建珊瑚礁砂液化评价标准提供试验依据。(2)探索珊瑚礁砂孔压增长规律,分析循环活动性的特点、形成条件以及对孔压发展的影响,甄选孔压增长计算模型并给出模型试验参数。(3)开展珊瑚礁砂渗透与体积变形试验,分析渗透特性的影响因素及其结果并据此建立珊瑚礁砂的渗透计算模型,给出相应的体积压缩系数,为珊瑚礁砂孔压增长与消散数值计算提供试验参数。(4)依托苏丹港、沙特RSGT、东帝汶等多个海内外珊瑚礁砂疏浚吹填土地基工程,探讨珊瑚礁岩土地基地层特征,分析强夯、振冲等密实法抗液化处理的有效加固深度、加固效果及地基承载力,建立有效加固深度计算经验关系公式或相关经验关系,建立基于原位测试指标的珊瑚礁砂液化评价判别方法与标准,并根据1993年关岛、2010年海地珊瑚礁砂地震液化实测标贯击数对临界曲线进行校准。(5)从经典液化机理解释以及体积相容方程出发,探讨排水法进行抗液化处理的理论依据,开展水平排水、竖向碎石桩排水等试验工况下的孔压增长与消散数值计算,给出“二元地质结构”填土场地不同土层厚度及地面高程的计算确定方法;对东帝汶珊瑚礁砂地基碎石桩排水法抗液化进行设计,确定碎石桩直径、间距等抗液化处理施工参数,分析碎石桩等排水法处理措施的有效性与影响因素。
杨天琪[3](2021)在《临清高速公路河谷区多层软土强夯加固地基路基沉降分析与预测》文中指出随着我国经济的高速发展,"一带一路"和交通强国战略的提出,全面开放新格局的形成,我国公路建设的规模体量不断扩大,对公路建设提出了更高的要求。云南省地处我国西南边境,与越南、缅甸、老挝相接壤,隔望印度洋和太平洋,是“一带一路”连接交汇的重要战略节点,而在云南地区广泛分布着软土、红黏土、膨胀土等不良性质的特殊性土,对工程建设造成了很大的困难。本文依托云南省临清高速公路工程,对该项目河谷区软硬交错互层多层软土地基土体特性进行了2年的现场监测试验,采集实测数据两万余个,对河谷区多层软土地基路基沉降进行了分析与预测,并运用有限差分软件FLAC3D进行数值模拟分析,论文主要取得了如下研究成果:(1)揭示了河谷区多层软土地基工程性质变化特征针对云南省临清高速河谷地区多层软土地基软硬层反复交替沉积的特殊工程地质条件,分析了该河谷区多层软土地基的地层成因、分布规律及工程性质;根据地层特征、工程性质把该地区软土地层分成了浅、深、夹层型三种地基类型;阐明了强夯垫层法、堆载预压法以及强夯垫层联合静压堆载法的加固机理。(2)基于现场监测数据分析了临清高速公路复杂沉积环境软土强夯加固地基路基10个典型监测断面沉降及固结变化规律基于实测数据,分析了河谷区多层软土地基的沉降变化规律及固结特征;通过静力触探试验评价了强夯垫层联合堆载静压法对河谷区多层软基的加固效果;根据地基数据反馈,针对强夯垫层法加固河谷区多层软基施工工艺提出了改进建议;提出在深厚软基上进行工程建设应重视地基的侧移与稳定性问题。(3)模拟计算并分析了河谷区多层软土强夯加固地基路基沉降时空变化特征通过FLAC3D数值计算,对比分析了实测数据与数值计算结果,验证了模型的正确性;揭示了河谷区多层软土强夯加固地基的沉降形态特征;通过沉降-孔压曲线分析了软土地基的固结规律并推导了固结公式;建立了多种工况模型,分析了不同地基处理方法针对河谷区多层软土地基加固效果与适用性。(4)建模预测了河谷区多层软土强夯加固地基路基沉降发展趋势论述了沉降预测基本原理,对比分析了多种沉降预测模型的优缺点;提出了最适合河谷区多层软土地基沉降预测的Asaoka方法;修正了分层总和法针对河谷区多层软土地基沉降预测;发现数据样本的选取将显着影响沉降预测精度。
邹梦超[4](2021)在《深厚回填土地基强夯加固处理研究分析》文中研究表明近年来,随着国家迅速发展,市内建设用地不断减少,用地冲突日益激增,采用“开山填谷”、“填海造地”等形成的地基逐渐被选用,但此类回填地基往往不能满足变形、稳定性和承载能力等建设要求,因而需对其进行处理,而强夯法操作简单、经济、环保,处理这类回填土有着巨大的优势,因此得到广泛应用。同时因强夯加固机理和回填土的复杂性,导致强夯理论远落后于工程实践,因此有必要对回填土特别是深厚回填粘性土地基进行相关研究,进而为后续类似工程提供一定的理论依据和经验。本文依托云南某项目,结合以往强夯资料与文献,对强夯加固机理及影响强夯加固效果因素进行了分析,主要内容和结论如下:(1)夯锤夯击土体时,夯坑周围发生隆起,土体也出现了较大的沉降量,单击沉降量随夯击时接触时间呈“S”型变化。表层土体(2m以内)的加固效果最好,土体沉降量与深度呈线性变化;在2m-4m范围内,土体沉降量随深度增大而缓慢减小,超过4m后,土体沉降量随深度增加而迅速减小。夯击后土体的压缩模量从5.3MPa增大到20MPa以上。(2)夯击能一定时,随着夯击次数的增加,土体沉降量也随之增大,但增幅变缓,本文的最佳夯击次数为第7击;并且重锤低落距(30t*20m)下夯击组合加固效果更好,采用小直径(1.4m)夯锤加固土体的深度较大,适用于浅层回填土。(3)其它参数相同,只改变夯击能级,发现土体沉降量和应力随夯击能的增大而增大。当夯击能级从4000k N·m增大到6000k N·m时,土体竖向位移量增幅为44.2%,而夯击能从6000k N·m增加到8000k N·m时,夯沉量增幅仅为8.1%,说明在工程中存在最佳夯击能。研究发现,在6000k N·m能级下,强夯有效加固深度在8m-9m范围内,土体塑性变形形似“梨形”;当夯击能从6000k N·m增加到8000k N·m时,土体有效加固深度增加不大,也在8m-9m范围内。(4)依次改变土体的内摩擦角、黏聚力、压缩模量和泊松比,发现内摩擦角对土体的变形量影响最大,其次是黏聚力,而压缩模量和泊松比对其影响不大。内摩擦角、黏聚力、压缩模量以及泊松比越大,土体变形量越小。当黏聚力从15k Pa增加到45k Pa时,土体单次沉降量减少了56%。
Editorial Department of China Journal of Highway and Transport;[5](2021)在《中国路基工程学术研究综述·2021》文中研究指明作为路面的基础,稳定、坚实、耐久的路基是确保路面质量的关键,而中国一直存在着"重路面、轻路基"的现象,使得路基病害导致的路面问题屡禁不止。近年来,已有越来越多的学者注意到了路面病害与路基质量的关联性,从而促进了路基工程相关的新理论、新方法、新技术等不断涌现。该综述以近几年路基工程相关的国家科技奖的技术创新内容、科技部及国家自然科学基金项目、优秀中文权威期刊的论文、Web of Science中的高水平论文的关键词为依据,系统分析了国内外路基工程五大领域的研究现状及未来的发展方向。具体涵盖了:地基处理新技术、路堤填料工程特性、多场耦合作用下路堤结构性能演变规律、路堑边坡的稳定性、路基支挡与防护等。可为路基工程领域的研究人员与技术人员提供参考和借鉴。
刘睿[6](2020)在《强夯法在山区高填方机场地基处理工程中的应用与分析》文中进行了进一步梳理本文以包头五当召通用机场为例,针对山区机场建设存在的高填方等地基处理问题开展了系统研究,就本项目工程解决了填方高度大于20m的大石块、土石混合材料高填方地基加固材料的选配、分层填筑方法和强夯加固施工参数以及处理后地基检测方法等一系列关键问题。强夯法对于地基处理具有工艺简单、施工速度快、节省材料及工程造价等许多优点,但相关方面的理论研究相对较少,设计计算还处于由经验和定性的基础上,因此,通过对石拐五当召通用机场地基处理的研究,提出适用于本环境的计算公式,为指导类似工程提供了一定的帮助。通过量纲分析法推导出简单、方便,可快速确定地基有效加固深度的计算公式,通过参考工程案例论证该计算公式,计算了不同地基土在不同夯击能作用下的有效加固深度和强夯后场地平均夯沉量,与其他研究者所推导出的公式计算相比较,作者所提出的经验公式计算结果误差最小。依托五当召通用机场项目,结合现场岩土和水文地质资料,结合机场场道设计,查阅大量相关文献获得强夯法加固的理论基础,按工程地基基础设计等级和场地复杂程度,以不同填筑体及不同强夯能级分出四个试夯区,采用现场原位试验与土工试验相结合,对试夯并进行必要的测试。同时通过试夯,在夯击能及其他参数一定的情况下,选用不同的锤重落高进行定量分析,得出应选重锤的结论,可直接指导本工程实际施工,同时也为该类工程在类似土质上的施工提供了一定的参考。现场试夯的检测数据和推导公式计算结果进行比对,该推导公式可适用于强夯现场快速得出强夯的有效加固深度。该经验公式不但为五当召通用机场地基土大面积处理提供可靠的依据和技术支撑,亦对今后类似场地强夯具有一定的指导意义。
张丽娟[7](2020)在《强夯法地基加固数值模拟及工程案例分析》文中研究指明随着社会的发展和科技的进步,地基处理技术得到了快速的发展,而强夯法地基加固方式因操作简单、经济合理、加固效果显着、适用范围广等优点,得到非常广泛的应用。但未有成熟的计算方法来指导设计和施工,强夯法处理后的地基在上部荷载作用下的变形还无法精准计算。因此研究强夯法对回填土地基加固的影响因素和实施效果具有重要意义。本文以某项目强夯法地基加固处理实例为依托,对强夯法加固高填方地基的一些具体问题进行分析,得出了强夯法地基加固处理的影响因素和工程实施中的改进方向。主要内容包括:1、介绍了回填土地基产生的背景及强夯法的优越性,简述强夯法的发展和实施中存在的问题。2、阐述了强夯法地基加固的机理,分析比较并选取了数值模拟的应用软件和本构。3、应用有限元软件ABAQUS进行数值模拟分析,比较锤重、落距、锤径和土体物理指标对强夯加固效果的影响程度;同时得出与实际工程同参数下的变形量和有效加固深度。4、根据实际工程的施工情况,强夯后的检测结果,与模拟结果的对比,得出实际施工结果围绕模拟结果上下浮动,同时提出了强夯法地基加固处理和基础应用的改进方向。为类似工程提供工程经验,也有利于强夯法的推广和发展。
许飞[8](2020)在《公路软土路基加固处理及沉降分析》文中研究表明随着我国经济水平快速发展,交通量日益增大,大量的公路建设往往会遇到各种不同的地质情况,其中软土给公路建设带来了较大的麻烦,成为公路建设过程中必须解决的问题。由于软土的特性,导致软土路基强度低、稳定性差,路基是路面的基础,必须要有足够的强度及稳定性。所以对地基进行加固处理显得十分重要,如果不对地基进行合理的处理,路基产生较大的沉降变形,使得道路无法正常使用,为了保证公路在使用时安全舒适,在公路设计和施工时需要严格要求控制沉降。在国内外研究的基础上,对几种常用处理方法的加固原理和施工技术进行研究分析,并对这些处理方法的适用范围、处理深度、施工进度、施工成本进行对比分析。以滁来全快速通道为案例简述其软土的分布和加固处理方法的选择,然后选取土工格栅和水泥搅拌桩复合加固断面建立有限元模型,模拟整个施工过程。并且分别对案例中使用的土工格栅和水泥搅拌桩两种加固方法进行研究分析,最后分析讨论不同因素对路基沉降的影响。所得的结论成果如下:(1)基于滁来全快速通道建设项目,经土工格栅和水泥搅拌桩复合加固后,路基的沉降和侧向位移明显减小,降低了地基中土体的竖向应力水平。(2)通过ABAQUS软件数值模拟,分别对土工格栅和水泥搅拌桩两种加固方法进行分析。对土工格栅加固分析,分析结果为:在路堤底部和路堤底部向下0.5m处加土工格栅对于路基沉降的影响很小,对路基侧向位移减小较明显,随着土工格栅层数的增加对路基侧向位移的减小可以叠加;对水泥搅拌桩加固分析,分析结果为:水泥搅拌桩能有效的降低路基的沉降和侧向位移。(3)基于ABAQUS软件数值模拟,对路基沉降的不同影响因素分析。对桩模量、桩间距、桩长进行分析,分析结果为:桩长变化对路基沉降的影响最大,桩模量、桩间距变化对路基沉降影响次之,当桩模量较大时,继续增加桩模量对路基沉降影响变弱,当桩间距较小时,继续减小桩间距对路基沉降影响也变弱;对淤泥层模量、淤泥层粘聚力、淤泥层摩擦角、淤泥层渗透系数进行分析,分析结果为:淤泥层渗透系数变化对路基沉降影响较大,淤泥层模量变化对路基沉降的影响较小,淤泥层粘聚力和摩擦角对路基沉降影响可以忽略不计;对桩端以下土层的模量、粘聚力、摩擦角进行分析,分析结果为:模量和摩擦角变化对路基沉降影响较大,粘聚力变化对路基沉降影响较小;对路堤填土速率、路堤施工间歇进行分析,分析结果为:填土速率和路堤施工间歇变化对路基沉降影响都较大,路堤施工时需要严格控制好填土速率和施工间歇;对路堤填土高度进行分析,分析结果为:路堤填土越高路基沉降越大,路堤填土高度对路基沉降影响很大。图:[58]表:[27]参:[51]。
左正轩[9](2020)在《强夯试验研究及高聚物隔振分析》文中研究表明强夯是一种具有节能环保优点的地基处理方法,随着强夯法在城镇地基处理施工中的推行,强夯施工所面临的振动与填料问题也在放大。寻求新型经济合理的强夯施工隔振方式,以及探索建筑废料作为强夯回填料的可行性,是强夯法应用领域发展的必经之路。对强夯的隔振方式与回填料进行分析研究,将理论成果用于指导工程实践,具有十分重要的意义。本文以郑州市瞪羚企业园地基处理试验作为背景,通过对试验监测检测的结果进行总结分析,完成了强夯施工方案的深化设计。着眼于强夯试验的振动监测结果,分析了试验得出的强夯振动传播特征,通过强夯振动峰值速度的监测结果反演得出强夯激励时域函数,最后将强夯激励时域函数输入有限元模型中,进一步研究强夯振动衰减的规律及不同隔振方式的隔振效果,得出了可用于指导工程实践的成果。完成的具体工作如下:(1)通过广泛查阅国内外相关文献,对强夯的设计施工参数、强夯振动对周边环境的影响、屏障隔振技术以及高聚物技术进行总结,研究了包括动力压密理论、动力固结理论、振动波压密理论在内的强夯加固的基本原理,探讨了强夯振动的衰减规律并延伸到强夯安全距离的确定。(2)完成了瞪羚企业园地基处理试验,采用的监测监测方式包括孔隙水压力监测、振动监测、标准贯入试验、静力触探、超重型动力触探。根据现场试验结果,完善了强夯施工设计方案。强夯处理后地基承载力为225.3k Pa,强夯置换处理后复合地基承载力为279k Pa,大于要求的地基承载力,说明采用建筑废料作为回填材料的强夯与强夯置换在该场地中切实可行。现场振动监测表明,相比于空沟隔振,双道高聚物隔振具有相近的隔振效果,且可兼作施工场地的止水帷幕,具有方便通行、便于维护的优点。(3)在对振动监测结果进行深入研究的基础上,研究了强夯振动频率与三向振动速度的特点,发现振动速度随频率的分布呈现两头高中间低的特征,强夯振动的主频为5Hz。展开了强夯振动的频域分析与时域分析,反演求出强夯振动的激励时域函数,分析表明强夯激励函数的三向速度数值大小遵循纵向>竖向>横向的规律,强夯引起地面振动的速度峰值出现在时间约0.06s的时间,整体呈现出脉冲激励的特征。(4)通过Midas GTX NX软件建立了无隔振、空沟隔振、双道隔振墙三种强夯动力分析模型,对比冲击应力加载,选择了三向振动速度的动力加载方式。采用四次多项式,拟合了三种模型的距离与最大振动速度的关系。空沟隔振条件下,在距离被保护物1m~6m的范围内建议取隔振效率为45%,在距离被保护物6m以外建议取隔振效率为40%;双道高聚物隔振墙隔振条件下下,在距离被保护物0m~10m的范围内建议取隔振效率为35%,在距离被保护物10m以外建议取隔振效率为40%。
帅宇轩[10](2020)在《临清高速强夯加固软土地基效果分析与评价》文中指出临沧临翔至清水河高速公路位于云南省临沧市临翔区、耿马县境内,是规划的昆明至清水河口岸高速公路的重要组成部分。该项目K97+500—K111+900沿南汀河东南岸布线,由于河谷内河道的多次变迁,在土层的组成上呈呈现饱和粉细砂、粉质黏土、砾卵石土和含砾中粗砂交错互层,地层情况十分复杂多变。粉质黏土和饱和粉细砂土存在着承载力不足、压缩性大、易发生不均匀沉降等工程病害。工程设计人员针对这临清高速复杂沉积环境软土地基的特点,选择了软土地基强夯加固方案。尽管强夯法处理己得到普遍推广与应用,但对其加固效果的评价仍在研究之中,在以往进行强夯加固效果评价时,往往忽略了不同地层条件对其加固效果的影响。因此基于现场监测试验数据,对不同地层情况下强夯加固效果进行系统性评价与分析具有较高的现实意义。本文依托临清高速软土地基强夯加固试验段,采用原位试验、室内试验、现场监测试验和数值模拟等研究方法,重点分析了临清高速复杂沉积环境软土地基强夯加固效果以及不同工况条件对其影响规律。本文的主要研究成果如下:1、通过监测孔隙水压力、土压力以及沉降量的变化情况,分析得到了孔隙水压力的变化规律、土体有效应力和固结度的增长规律以及路基不同位置处沉降量的发展规律。2、通过标准贯入试验和静力触探试验,计算得到了强夯加固前后不同深度处地基土体的基本承载力和压缩模量。基于其提升幅度,分析了其有效加固深度。3、建立了有限元模型,通过数值模拟得到了地基模型在强夯荷载作用下的响应情况。并改变了强夯荷载和地层模型以模拟不同的强夯施工工况,分析地基土体在不同强夯施工参数以及地层组合情况下的加固效果,评价了临清高速强夯加固方案的合理性,为河漫滩沉积环境软土地基强夯加固工程提供了可靠的理论依据。
二、强夯法有效加固深度的计算方法与对比分析(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、强夯法有效加固深度的计算方法与对比分析(论文提纲范文)
(1)中国强夯40年之技术创新(论文提纲范文)
0 引言 |
1 强夯理论的发展 |
1.1 强夯加固的动力固结理论 |
1.2 强夯加固机理的微观解释 |
1.3 强夯加固软土地基的探讨 |
1.4 强夯置换理论 |
1.5 对国内各规范强夯章节的评述 |
2 高能级强夯技术的发展 |
2.1 高能级强夯加固机理 |
2.2 高能级强夯技术的应用 |
2.3 高能级强夯有效加固深度 |
3 复合强夯加固技术的发展 |
3.1 砂桩-强夯法 |
3.2 碎石桩-强夯法 |
3.3 堆载预压-强夯法 |
3.4 真空井点降水-强夯法 |
3.5 排水板+管井降水+强夯法 |
3.6 真空预压-强夯法 |
3.7 孔内强夯法 |
4 高能级强夯在超高超深填方分层处理中的实例应用 |
4.1 原场地地基处理 |
4.2 高填方填筑体处理 |
4.3 挖填交接面、施工搭接面处理 |
4.4 地下排渗系统设置 |
5 强夯技术的发展展望 |
6 结论 |
(2)珊瑚礁砂地震液化特性与抗液化处理方法研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 选题背景 |
1.2 研究现状 |
1.3 本文主要工作 |
第二章 珊瑚礁砂液化强度试验研究 |
2.1 引言 |
2.2 珊瑚礁砂基本物理性质 |
2.3 珊瑚礁砂液化特性试验 |
2.3.1 试验方案 |
2.3.2 动应力衰减的修正 |
2.3.3 珊瑚礁砂抗液化强度 |
2.4 本章小结 |
第三章 珊瑚礁砂孔压增长模型研究 |
3.1 引言 |
3.2 应变孔压增长模型 |
3.2.1 体积相容方程 |
3.2.2 体应变增量试验 |
3.2.3 回弹模量试验 |
3.3 应力孔压增长模型 |
3.4 本章小结 |
第四章 珊瑚礁砂渗透与体积变形特性研究 |
4.1 引言 |
4.2 珊瑚礁砂常水头渗透试验 |
4.3 珊瑚礁砂渗透系数计算模型 |
4.3.1 相关性分析 |
4.3.2 孔隙比对渗透系数的影响 |
4.3.3 有效粒径对渗透系数的影响 |
4.3.4 珊瑚礁砂渗透系数计算公式 |
4.4 孔压增长与消散导致的体积变形 |
4.4.1 液化机理与体积相容条件 |
4.4.2 珊瑚礁砂孔压消散体应变试验 |
4.4.3 珊瑚礁砂孔压消散体应变影响因素 |
4.4.4 珊瑚礁砂孔压增长与消散试验参数 |
4.5 本章小结 |
第五章 密实法处理珊瑚礁砂可液化场地适宜性研究 |
5.1 引言 |
5.2 珊瑚礁砂工程地质背景与场地特征 |
5.2.1 苏丹港珊瑚礁砂场地特征 |
5.2.2 沙特RSGT码头珊瑚礁砂场地特征 |
5.2.3 南海某试验区珊瑚礁砂场地特性 |
5.3 常用密实法处理技术与珊瑚礁砂地基加固效果 |
5.3.1 常用密实法处理技术原理与地基加固 |
5.3.2 珊瑚礁砂地基强夯法加固效果 |
5.3.3 珊瑚礁砂地基振冲法加固效果 |
5.4 珊瑚礁砂地基抗液化处理效果评价 |
5.4.1 有效加固处理深度 |
5.4.2 地基承载力 |
5.4.3 珊瑚礁砂场地地基液化评价方法与标准 |
5.5 本章小结 |
第六章 排水法处理珊瑚礁砂可液化场地适宜性研究 |
6.1 引言 |
6.2 水平土层孔压增长与消散基本方程 |
6.2.1 体积相容条件 |
6.2.2 孔压增长与消散基本方程 |
6.2.3 模型计算参数 |
6.3 Feq Drain孔压增长与消散计算程序简介 |
6.3.1 简介 |
6.3.2 输入模块 |
6.3.3 输出模块 |
6.4 不同排水工程措施下的孔压增长消散数值计算 |
6.4.1 珊瑚礁砂计算参数 |
6.4.2 设置水平排水层抗液化处理效果评价 |
6.4.3 设置竖向碎石桩抗液化处理效果评价 |
6.5 珊瑚礁砂排水法工程实践与地基抗液化评价 |
6.5.1 工程概况与场地特征 |
6.5.2 抗震设计标准与液化可能性评价 |
6.5.3 振冲置换碎石桩地基加固方案 |
6.6 本章小结 |
第七章 结论与展望 |
7.1 结论 |
7.2 研究展望 |
参考文献 |
致谢 |
作者简介 |
攻读博士期间发表的文章 |
攻读博士期间参与的科研项目 |
(3)临清高速公路河谷区多层软土强夯加固地基路基沉降分析与预测(论文提纲范文)
致谢 |
中文摘要 |
ABSTRACT |
1 引言 |
1.1 研究背景和意义 |
1.2 国内外研究现状 |
1.2.1 河谷区多层软土地基研究现状 |
1.2.2 软土地基处理方法研究现状 |
1.2.3 软土地基沉降分析与预测研究现状 |
1.3 论文主要研究内容和技术线路 |
1.3.1 主要研究内容 |
1.3.2 研究方法 |
1.3.3 技术线路 |
2 河谷区多层软土地基工程特性分析 |
2.1 工程背景 |
2.1.1 项目概况 |
2.1.2 地层岩性 |
2.1.3 区域地质构造 |
2.1.4 水文地质条件 |
2.2 河谷区多层软土地基工程特性分析 |
2.2.1 地层成因 |
2.2.2 分布规律 |
2.2.3 工程性质 |
2.3 强夯垫层联合堆载静压法加固软土地基机理分析 |
2.3.1 软土地基处理方法 |
2.3.2 强夯垫层法加固机理 |
2.3.3 堆载静压法加固机理 |
2.3.4 强夯垫层联合堆载预压法加固机理 |
2.4 本章小结 |
3 河谷区多层软土强夯加固地基现场监测试验 |
3.1 软基处理段简介 |
3.2 监测测点平面分布 |
3.3 监测测点剖面分布 |
3.4 检测元件的埋设与监测 |
3.4.1 分层沉降监测 |
3.4.2 孔隙水压力监测 |
3.4.3 土压力监测 |
3.4.4 侧向位移监测 |
3.5 强夯垫层法设计参数与工艺 |
4 河谷区多层软土强夯加固地基固结沉降变化特征分析 |
4.1 强夯加固河谷区多层软土地基沉降规律研究 |
4.1.1 软土地基在各阶段沉降形态特征研究 |
4.1.2 不同类型软土地基分层沉降规律研究 |
4.1.3 沉降变化规律分析 |
4.2 强夯加固软土地基孔隙水压力与固结规律研究 |
4.2.1 软土地基各阶段超静孔隙水压力变化特征研究 |
4.2.2 不同类型软土地基固结特征研究 |
4.2.3 孔隙水压力变化与固结特征分析 |
4.3 强夯加固软土地基有效应力与加固效果研究 |
4.3.1 软土地基各阶段土压力变化特征研究 |
4.3.2 不同类型软土地基强夯加固效果分析 |
4.3.3 土压力与强夯加固效果分析 |
4.4 强夯加固软土地基土体侧向位移特征研究 |
4.4.1 软土地基不同深度土层侧向位移特征研究 |
4.4.2 不同类型软土地基侧向位移对比分析 |
4.4.3 侧向位移变化规律分析 |
4.5 本章小结 |
5 河谷区多层软土强夯加固地基路基沉降数值分析 |
5.1 FLAC3D软件综述 |
5.1.1 FLAC3D软件简介 |
5.1.2 流固耦合数值分析方法 |
5.1.3 非线性动力反应数值分析方法 |
5.2 强夯加固软基数值模型的建立与沉降分析 |
5.2.1 模型建立 |
5.2.2 强夯冲击荷载施加 |
5.2.3 强夯加固软基沉降变形特征分析 |
5.2.4 强夯加固软基孔隙水压力变化分析 |
5.2.5 强夯加固软土地基固结特征分析 |
5.2.6 各类型软土地基强夯加固效果对比分析 |
5.3 碎石桩加固软基数值模型建立与沉降分析 |
5.3.1 碎石桩加固相关参数的确定 |
5.3.2 碎石桩加固软基沉降变形特征分析 |
5.3.3 碎石桩加固软基孔隙水压力变化分析 |
5.3.4 碎石桩加固软基应力数值模拟分析 |
5.4 天然软土地基数值模型建立与沉降分析 |
5.4.1 模型建立 |
5.4.2 天然软基数值模型计算结果分析 |
5.5 不同加固方法条件下软土地基沉降与固结特征分析 |
5.6 本章小结 |
6 河谷区多层软土强夯加固地基沉降预测 |
6.1 高速公路路基沉降预测方法 |
6.1.1 分层总和法 |
6.1.2 经验公式法 |
6.1.3 Asaoka法 |
6.2 临清高速河谷区多层软土强夯加固地基路基沉降预测 |
6.2.1 分层总和法的沉降预测与修正 |
6.2.2 不同模型下软基沉降发展特征预测 |
6.2.3 Asaoka法预测 |
6.3 不同模型沉降预测结果对比与分析 |
6.4 本章小结 |
7 结论与展望 |
7.1 结论 |
7.2 展望 |
参考文献 |
索引 |
作者简历 |
学位论文数据集 |
(4)深厚回填土地基强夯加固处理研究分析(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究背景及研究意义 |
1.2 强夯法概述及发展历程 |
1.3 强夯法研究现状 |
1.3.1 强夯加固理论 |
1.3.2 强夯数值模拟分析 |
1.4 论文研究内容 |
1.5 技术路线 |
第二章 强夯法加固机理及夯后检测技术 |
2.1 概述 |
2.2 强夯加固机理 |
2.2.1 动力固结理论 |
2.2.2 振动波压密理论 |
2.2.3 动力置换理论 |
2.3 强夯后地基检测 |
2.3.1 载荷试验 |
2.3.2 动力触探试验 |
2.3.3 瑞利波试验 |
2.4 本章小结 |
第三章 强夯设计及施工参数确定 |
3.1 强夯法设计步骤 |
3.2 强夯主要施工设备 |
3.2.1 夯锤 |
3.2.2 起重设备 |
3.2.3 脱钩装置 |
3.3 强夯施工参数选取 |
3.3.1 有效加固深度 |
3.3.2 夯击点布置 |
3.3.3 夯击次数 |
3.3.4 夯击遍数 |
3.3.5 间歇时间 |
3.3.6 处理范围 |
3.4 本章小结 |
第四章 深厚回填土地基强夯加固处理及有限元建模 |
4.1 工程项目概况 |
4.2 项目场地环境 |
4.2.1 地质构造、地震、气象及水文 |
4.2.2 地基土层存在风险 |
4.2.3 工程地质 |
4.3 地基处理 |
4.3.1 强夯施工方案 |
4.3.2 强夯施工参数 |
4.4 强夯施工后效果检测 |
4.4.1 浅层平板载荷试验 |
4.4.2 动力触探试验 |
4.5 工程数值模拟 |
4.6 ABAQUS有限元软件简介 |
4.7 强夯有限元模型的建立 |
4.7.1 本构模型选取 |
4.7.2 单元类型选择 |
4.7.3 模型网格划分 |
4.7.4 有限元模型建立 |
4.7.5 荷载输入及参数 |
4.8 模型合理性 |
4.9 本章小结 |
第五章 影响深厚回填土地基强夯效果因素研究 |
5.1 同一夯击能作用下强夯效果影响因素研究 |
5.1.1 单次夯击下地基土体竖向位移变化情况 |
5.1.2 单次夯击下地基土体应力变化情况 |
5.1.3 不同夯击次数下地基土体竖向位移变化情况 |
5.1.4 不同夯击组合下土体强夯效果 |
5.1.5 不同夯锤直径强夯效果 |
5.2 不同夯击能作用下强夯加固效果研究 |
5.2.1 单次夯击地基土体竖向位移变化情况 |
5.2.2 单次夯击下地基土体动应力变化情况 |
5.2.3 单次夯击下地基土体水平位移变化情况 |
5.3 有效加固深度分析 |
5.3.1 相同夯击能下对有效加固深度影响因素研究 |
5.3.2 不同夯击能下对有效加固深度影响因素研究 |
5.4 土层物理力学指标对强夯效果的影响 |
5.5 本章小结 |
第六章 结论与展望 |
6.1 结论 |
6.2 展望 |
致谢 |
参考文献 |
附录 攻读硕士学位期间取得成果 |
(5)中国路基工程学术研究综述·2021(论文提纲范文)
索 引 |
0 引 言(长沙理工大学张军辉老师、郑健龙院士提供初稿) |
1 地基处理新技术(山东大学崔新壮老师、重庆大学周航老师提供初稿) |
1.1 软土地基处理 |
1.1.1 复合地基处理新技术 |
1.1.2 排水固结地基处理新技术 |
1.2 粉土地基 |
1.3 黄土地基 |
1.4 饱和粉砂地基 |
1.4.1 强夯法地基处理技术新进展 |
1.4.2 高真空击密法地理处理技术 |
1.4.3 振冲法地基处理技术 |
1.4.4 微生物加固饱和粉砂地基新技术 |
1.5 其他地基 |
1.5.1 冻土地基 |
1.5.2 珊瑚礁地基 |
1.6 发展展望 |
2 路堤填料的工程特性(东南大学蔡国军老师、中南大学肖源杰老师、长安大学张莎莎老师提供初稿) |
2.1 特殊土 |
2.1.1 膨胀土 |
2.1.2 黄 土 |
2.1.3 盐渍土 |
2.2 黏土岩 |
2.2.1 黏 土 |
2.2.2 泥 岩 |
(1)粉砂质泥岩 |
(2) 炭质泥岩 |
(3)红层泥岩 |
(4)黏土泥岩 |
2.2.3 炭质页岩 |
2.3 粗粒土 |
2.4 发展展望 |
3 多场耦合作用下路堤结构性能演变规律(长沙理工大学张军辉老师、中科院武汉岩土所卢正老师提供初稿) |
3.1 路堤材料性能 |
3.2 路堤结构性能 |
3.3 发展展望 |
4 路堑边坡稳定性分析(长沙理工大学曾铃老师、重庆大学肖杨老师、长安大学晏长根老师提供初稿) |
4.1 试验研究 |
4.1.1 室内试验研究 |
4.1.2 模型试验研究 |
4.1.3 现场试验研究 |
4.2 理论研究 |
4.2.1 定性分析法 |
4.2.2 定量分析法 |
4.2.3 不确定性分析法 |
4.3 数值模拟方法研究 |
4.3.1 有限元法 |
4.3.2 离散单元法 |
4.3.3 有限差分法 |
4.4 发展展望 |
5 路基防护与支挡(河海大学孔纲强老师、长沙理工大学张锐老师提供初稿) |
5.1 坡面防护 |
5.2 挡土墙 |
5.2.1 传统挡土墙 |
5.2.2 加筋挡土墙 |
5.2.3 土工袋挡土墙 |
5.3 边坡锚固 |
5.3.1 锚杆支护 |
5.3.2 锚索支护 |
5.4 土钉支护 |
5.5 抗滑桩 |
5.6 发展展望 |
策划与实施 |
(6)强夯法在山区高填方机场地基处理工程中的应用与分析(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景及理论意义 |
1.2 强夯法研究现状综述 |
1.3 研究的主要内容与目的 |
1.4 研究创新点 |
1.5 技术路线图 |
1.6 强夯法的主要技术特点 |
1.7 强夯加固理论 |
1.7.1 动力固结 |
1.7.2 动力密实 |
1.7.3 动力置换 |
1.8 强夯加固机理的分析与研究 |
1.9 本章小结 |
2 山区机场高填方地基处理方法的分析 |
2.1 机场项目概况及气候特征 |
2.2 机场地形地貌及区域水文地质条件 |
2.3 机场地层岩性特征 |
2.4 机场混凝土道面结构形式 |
2.5 机场场区岩土工程特性分析与评价 |
2.5.1 室内土工物理力学试验 |
2.5.2 岩石单轴抗压强度 |
2.5.3 动力触探试验与标准贯入试验统计 |
2.6 机场岩土层工程性能评价 |
2.7 地基处理方法的选择分析 |
2.8 本章小结 |
3 山区机场高填方强夯法有效加固深度的研究 |
3.1 强夯加固深度研究 |
3.2 山区杂填碎石土地基有效加固深度计算方法 |
3.2.1 Menard修正系数法 |
3.2.2 经验公式法 |
3.2.3 理论分析法 |
3.3 强夯有效加固深度在山区碎石土高填方地基的主要影响因素 |
3.3.1 加固深度与单击夯击能的关系 |
3.3.2 加固深度与夯锤底面积的关系 |
3.3.3 土的干容重与加固深度的关系 |
3.4 建立有效加固深度公式 |
3.4.1 有效加固深度公式建立的基本原则 |
3.4.2 有效加固深度公式的建立过程 |
3.5 计算公式验证 |
3.6 本章小结 |
4 试夯方案及强夯后检测结果分析 |
4.1 强夯试夯设计方案 |
4.1.1 试夯目的 |
4.1.2 试夯施工设备 |
4.1.3 强夯试验区域选取 |
4.1.4 回填材料及回填要求 |
4.1.5 试夯区主要内容及设计参数 |
4.1.6 试夯区检测要求 |
4.2 试夯1区(粗粒回填料)——能级4000kN·m |
4.2.1 重型动力触探 |
4.2.2 现场静载试验检测 |
4.2.3 试夯1区压实度检测 |
4.2.4 试夯1区——能级4000kN·m检测结论 |
4.3 试夯2区(粗粒回填料)——能级6000kN·m |
4.3.1 重型动力触探 |
4.3.2 现场静载试验检测 |
4.3.3 试夯2区压实度检测 |
4.3.4 试夯2区——能级6000kN·m检测结论 |
4.4 试夯3区(细粒回填料)——能级4000kN·m |
4.4.1 重型动力触探 |
4.4.2 现场静载试验检测 |
4.4.3 试夯3区压实度检测 |
4.4.4 试夯3区——能级4000kN·m检测结论 |
4.5 试夯4区(细粒回填料)——能级6000kN·m |
4.5.1 重型动力触探 |
4.5.2 现场静载试验检测 |
4.5.3 试夯4区压实度检测 |
4.5.4 试夯4区——能级6000kN·m检测结论 |
4.6 本章小结 |
5 地基处理方案设计 |
5.1 机场地基处理强夯工程重难点分析 |
5.1.1 基岩开挖 |
5.1.2 填筑体处理 |
5.1.3 挖填协调变形 |
5.2 机场土石方填筑体处理方案及设计参数 |
5.2.1 土石方填筑体处理方案 |
5.2.2 土石方填筑体处理设计参数 |
5.3 机场高填方原地面土基处理 |
5.3.1 原地基软弱层处理 |
5.3.2 挖方区及挖填交界面的处理 |
5.3.3 土石方填筑体处理施工工艺 |
5.4 道基有效加固深度检测及工后沉降控制、变形监测 |
5.4.1 道基有效加固深度检测 |
5.4.2 工后道基沉降控制 |
5.4.3 变形监测 |
5.5 本章小结 |
结论 |
参考文献 |
在学研究成果 |
致谢 |
(7)强夯法地基加固数值模拟及工程案例分析(论文提纲范文)
致谢 |
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景及意义 |
1.1.1 研究背景 |
1.1.2 地基处理的方法 |
1.1.3 研究强夯法地基处理技术的意义 |
1.2 国内外研究及应用现状 |
1.2.1 强夯技术的发展与应用 |
1.2.2 强夯法在研究和应用中存在的问题 |
1.3 本文研究思路及论文框架 |
第2章 强夯法的加固机理及应用 |
2.1 强夯加固机理 |
2.2 强夯法应用效果 |
2.2.1 有效加固深度 |
2.2.2 加固质量 |
2.3 强夯法加固的仿真机理 |
2.3.1 数值模拟的应用软件 |
2.3.2 模型土体本构关系 |
第3章 深回填土强夯法数值模拟分析 |
3.1 ABAQUS有限元模型的建立 |
3.2 单次夯击后土体的变化规律 |
3.2.1 单次夯击后土体变形量的变化规律 |
3.2.2 单次夯击后的有效加固深度变化规律 |
3.3 多次夯击后土体的变化规律 |
3.3.1 多次夯击后土体变形量的变化规律 |
3.3.2 多次夯击后的有效加固深度变化规律 |
3.4 土层物理指标对强夯效果的影响 |
3.5 本章小结 |
第4章 深回填土强夯的工程案例分析 |
4.1 工程概况及风险分析 |
4.1.1 工程概况 |
4.1.2 风险分析 |
4.2 工程强夯的可行性分析 |
4.2.1 沉降变化规律 |
4.2.2 经济性比较 |
4.2.3 地理环境 |
4.3 强夯法在工程实例中的应用 |
4.3.1 强夯法的应用范围 |
4.3.2 强夯法的施工 |
4.3.3 强夯法的检测 |
4.3.4 使用中的监测 |
4.4 本章小结 |
第5章 结论及展望 |
5.1 研究结论 |
5.2 进一步研究工作 |
参考文献 |
作者简历 |
1. 教育经历 |
2. 工作经历 |
(8)公路软土路基加固处理及沉降分析(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究的背景和意义 |
1.2 国内外研究现状 |
1.2.1 地基处理技术的研究现状 |
1.2.2 固结理论的研究现状 |
1.2.3 沉降计算方法的研究现状 |
1.3 本文主要研究内容及技术路线 |
1.3.1 本文的研究内容 |
1.3.2 研究技术路线 |
第二章 软土路基的工程性质和常用处理方法 |
2.1 软土路基的工程性质 |
2.1.1 软土的概念及类型 |
2.1.2 软土路基的沉降过程 |
2.2 常用加固处理方法 |
2.2.1 换填法 |
2.2.2 强夯法 |
2.2.3 土工合成材料法 |
2.2.4 袋装砂井排水法 |
2.2.5 塑料板排水法 |
2.2.6 真空预压法 |
2.2.7 水泥搅拌桩法 |
2.2.8 碎石桩法 |
2.3 常用加固处理方法对比分析 |
2.4 本章小结 |
第三章 有限元模型的建立与分析 |
3.1 工程概况 |
3.1.1 周边地形 |
3.1.2 软土的分布和加固措施 |
3.1.3 地质条件 |
3.2 有限元软件ABAQUS简述 |
3.2.1 概述 |
3.2.2 ABAQUS主要模块介绍 |
3.2.3 ABAQUS软件分析的流程 |
3.3 材料的本构模型 |
3.3.1 线弹性模型 |
3.3.2 Mohr-Coulomb塑性模型 |
3.4 有限元模型的建立 |
3.4.1 几何模型的建立 |
3.4.2 材料属性的定义 |
3.4.3 分析步的设置 |
3.4.4 施工过程的模拟 |
3.4.5 网格划分 |
3.5 数值模拟计算过程及结果分析 |
3.5.1 数值模拟计算过程 |
3.5.2 计算结果分析 |
3.6 加固处理分析 |
3.6.1 土工格栅加固 |
3.6.2 水泥搅拌桩加固 |
3.7 本章小结 |
第四章 路基沉降影响因素分析 |
4.1 水泥搅拌桩对路基沉降影响分析 |
4.1.1 桩体的模量对路基沉降影响 |
4.1.2 桩间距对路基沉降影响 |
4.1.3 桩长对路基沉降影响 |
4.2 淤泥层对路基沉降影响分析 |
4.2.1 淤泥层模量对路基沉降影响 |
4.2.2 淤泥层粘聚力对路基沉降影响 |
4.2.3 淤泥层摩擦角对路基沉降影响 |
4.2.4 淤泥层渗透系数对路基沉降影响 |
4.3 桩端以下土层对路基沉降影响分析 |
4.3.1 桩端以下土层模量对路基沉降影响 |
4.3.2 桩端以下土层粘聚力对路基沉降影响 |
4.3.3 桩端以下土层摩擦角对路基沉降影响 |
4.4 路堤施工时间对路基沉降影响分析 |
4.4.1 路堤填土速率对路基沉降的影响 |
4.4.2 路堤施工间歇对路基沉降的影响 |
4.5 路堤填土高度对路基沉降影响分析 |
4.6 本章小结 |
第五章 结论与展望 |
5.1 结论 |
5.2 展望 |
参考文献 |
致谢 |
作者简介及读研期间主要科研成果 |
(9)强夯试验研究及高聚物隔振分析(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 强夯法 |
1.2 强夯法的设计施工参数 |
1.3 强夯振动对周边环境的影响 |
1.4 屏障隔振技术 |
1.5 高聚物 |
1.6 本文研究内容与研究意义 |
第二章 强夯加固与强夯振动基本原理 |
2.1 强夯加固的基本原理 |
2.2 强夯振动的研究现状 |
2.3 小结 |
第三章 强夯地基处理现场试验 |
3.1 试验目的 |
3.2 试验概况 |
3.3 场地概况 |
3.4 动力参数设计施工方案 |
3.5 孔隙水压力监测 |
3.6 振动监测 |
3.7 原位测试 |
3.8 设计施工方案的完善 |
3.9 试验结论 |
第四章 振动分析 |
4.1 振动监测详细结果 |
4.2 振动评估指标的选定 |
4.3 强夯振动激励函数 |
4.4 本章小结 |
第五章 强夯隔振数值分析 |
5.1 Midas GTX NX软件简介 |
5.2 数值模型的建立 |
5.3 动力荷载的确定 |
5.4 隔振方式效果分析 |
5.5 强夯施工隔振方案的完善 |
5.6 本章小结 |
第六章 结论与展望 |
6.1 结论 |
6.2 未来的研究方向 |
参考文献 |
附录 |
致谢 |
(10)临清高速强夯加固软土地基效果分析与评价(论文提纲范文)
致谢 |
摘要 |
ABSTRACT |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 复杂沉积环境软土地基研究现状 |
1.2.2 强夯加固机理研究现状 |
1.2.3 强夯过程中孔压变化规律研究现状 |
1.2.4 强夯有效加固深度计算理论研究现状 |
1.2.5 目前研究存在的问题 |
1.3 本文的主要研究内容及研究方法 |
1.3.1 主要研究内容 |
1.3.2 研究方法 |
1.3.3 技术路线 |
2 临清高速沿线工程地质概况 |
2.1 引言 |
2.2 临清高速沿线自然地理特征 |
2.2.1 地形地貌 |
2.2.2 气象及水文特征 |
2.3 临清高速沿线工程地质概况 |
2.3.1 地层岩性 |
2.3.2 区域地质构造 |
2.3.3 新构造运动 |
2.3.4 地震活动 |
2.3.5 工程地质分区 |
2.3.6 水文地质条件 |
2.3.7 不良地质现象 |
2.4 临清高速强夯加固工程设计概况 |
2.4.1 临清高速软土地基强夯处治方案的选取 |
2.4.2 临清高速软土地基强夯加固施工方案 |
2.4.3 临清高速软土地基强夯加固深度预估值 |
2.5 本章小结 |
3 临清高速复杂沉积环境软基强夯加固监测试验 |
3.1 引言 |
3.2 现场监测试验内容简介 |
3.2.1 孔隙水压力监测试验 |
3.2.2 土压力监测试验 |
3.2.3 分层沉降监测试验 |
3.2.4 水平位移监测试验 |
3.3 现场监测试验布置 |
3.3.1 监测断面分布 |
3.3.2 监测断面地层构造及土层性质 |
3.3.3 监测断面仪器埋设布置 |
3.4 本章小结 |
4 强夯加固地基强度增长及孔压变化分析 |
4.1 强夯加固前后土体承载力性状变化规律研究 |
4.1.1 强夯加固前后标贯击数变化特征 |
4.1.2 强夯加固前后比贯入阻力变化特征 |
4.1.3 强夯加固后土体承载性能的变化趋势总结 |
4.2 强夯后土体孔隙水压力变化规律研究 |
4.2.1 1#断面孔隙水压力变化规律 |
4.2.2 2#断面孔隙水压力变化规律 |
4.2.3 3#断面孔隙水压力变化规律 |
4.2.4 强夯后孔隙水压力变化总体趋势 |
4.3 地基强夯后土体有效应力增长及其固结规律分析 |
4.3.1 1#断面土体有效应力增长及固结规律 |
4.3.2 2#断面土体有效应力增长及固结规律 |
4.3.3 3#断面土体有效应力增长及固结规律 |
4.3.4 地基强夯加固后土体有效应力增长及其固结的总体特征 |
4.4 强夯后地基土体分层沉降规律分析 |
4.4.1 路基中线附近土体分层沉降规律 |
4.4.2 路基两侧坡脚处土体分层沉降规律 |
4.5 强夯引起的土体水平位移变化特征 |
4.6 本章小结 |
5 基于非线性时程分析的强夯加固有限元分析模型 |
5.1 引言 |
5.2 非线性时程分析 |
5.2.1 基本原理 |
5.2.2 强夯荷载的模拟 |
5.3 强夯加固有限元模型的建立 |
5.3.1 基本假定 |
5.3.2 本构模型 |
5.3.3 边界条件 |
5.3.4 计算参数 |
5.4 本章小结 |
6 临清高速公路路基地基强夯加固效果数值分析 |
6.1 河谷软土地基强夯加固效果数值计算分析方案 |
6.2 不同深度土体强夯后加固效果变化规律分析 |
6.2.1 土体竖向位移变化规律 |
6.2.2 土体竖向有效应力峰值变化规律 |
6.2.3 土体变形模量变化规律 |
6.3 不同地层组合情况下强夯加固效果分析 |
6.4 强夯关键施工参数对强夯加固效果的影响分析 |
6.4.1 不同夯击次数对强夯加固效果的影响分析 |
6.4.2 不同夯击能对强夯加固效果影响分析 |
6.5 本章小结 |
7 结论与展望 |
7.1 主要成果与结论 |
7.2 进一步研究的建议和展望 |
参考文献 |
作者简历及攻读硕士学位期间参与的科研项目 |
学位论文数据集 |
四、强夯法有效加固深度的计算方法与对比分析(论文参考文献)
- [1]中国强夯40年之技术创新[J]. 董炳寅,水伟厚,秦劭杰. 地基处理, 2022(01)
- [2]珊瑚礁砂地震液化特性与抗液化处理方法研究[D]. 秦志光. 中国地震局工程力学研究所, 2021(02)
- [3]临清高速公路河谷区多层软土强夯加固地基路基沉降分析与预测[D]. 杨天琪. 北京交通大学, 2021(02)
- [4]深厚回填土地基强夯加固处理研究分析[D]. 邹梦超. 昆明理工大学, 2021(01)
- [5]中国路基工程学术研究综述·2021[J]. Editorial Department of China Journal of Highway and Transport;. 中国公路学报, 2021(03)
- [6]强夯法在山区高填方机场地基处理工程中的应用与分析[D]. 刘睿. 内蒙古科技大学, 2020(06)
- [7]强夯法地基加固数值模拟及工程案例分析[D]. 张丽娟. 浙江大学, 2020(01)
- [8]公路软土路基加固处理及沉降分析[D]. 许飞. 安徽建筑大学, 2020(01)
- [9]强夯试验研究及高聚物隔振分析[D]. 左正轩. 广州大学, 2020(02)
- [10]临清高速强夯加固软土地基效果分析与评价[D]. 帅宇轩. 北京交通大学, 2020(03)