一、STEADY-STATE HIERARCHICAL INTELLIGENT CONTROL OF LARGE-SCALE INDUSTRIAL PROCESSES(论文文献综述)
刘树豪[1](2020)在《S黄金冶炼公司的数字化生产管理系统升级改造》文中进行了进一步梳理数字化工厂作为实现智能工厂的关键技术,是未来冶金领域工程设计与管理的发展方向。本文阐述了数字化工厂的概念及其内涵,总结了信息技术发展下的数字化冶炼企业建设的系统理论和控制理论等;并通过对黄金冶炼企业的调研,分析了我国黄金冶炼企业目前数字化建设的现状,探讨了数字化冶炼企业建设存在的问题及影响因素,并确定了技术及管理上存在的突出问题。针对以上突出问题,本文首先提出了规划设计视频监控,结合网络化的数据采集方法搜集整理数据并搭建数据采集平台;以物理架构拓扑设计图为框架来实现数据大脑的设计;设计智能控制以及协同控制系统,实现生产工艺指标的智能化控制与决策,进而得到一个较为完备的生产解决方案。利用仿真技术,对所提出的方案进行优化与可行性的验证。并结合精益生产的思想在生产调度管理、质量管理等方面建设精益生产管控平台,实现了企业生产管理的数字化。通过本课题的研究和实施,实现了S黄金冶炼公司冶炼生产的数字化管理,提高了效率和效益,降低了成本;同时,为黄金冶炼企业在数字化转型、智能化整体规划,以及生产管理等方面提供理论依据,具有较大的推广应用价值。
教育部[2](2020)在《教育部关于印发普通高中课程方案和语文等学科课程标准(2017年版2020年修订)的通知》文中提出教材[2020]3号各省、自治区、直辖市教育厅(教委),新疆生产建设兵团教育局:为深入贯彻党的十九届四中全会精神和全国教育大会精神,落实立德树人根本任务,完善中小学课程体系,我部组织对普通高中课程方案和语文等学科课程标准(2017年版)进行了修订。普通高中课程方案以及思想政治、语文、
刘森,张书维,侯玉洁[3](2020)在《3D打印技术专业“三教”改革探索》文中进行了进一步梳理根据国家对职业教育深化改革的最新要求,解读当前"三教"改革对于职教教育紧迫性和必要性,本文以3D打印技术专业为切入点,深层次分析3D打印技术专业在教师、教材、教法("三教")改革时所面临的实际问题,并对"三教"改革的一些具体方案可行性和实际效果进行了探讨。
马建,孙守增,芮海田,王磊,马勇,张伟伟,张维,刘辉,陈红燕,刘佼,董强柱[4](2018)在《中国筑路机械学术研究综述·2018》文中进行了进一步梳理为了促进中国筑路机械学科的发展,从土石方机械、压实机械、路面机械、桥梁机械、隧道机械及养护机械6个方面,系统梳理了国内外筑路机械领域的学术研究进展、热点前沿、存在问题、具体对策及发展前景。土石方机械方面综述了推土机、挖掘机、装载机、平地机技术等;压实机械方面综述了静压、轮胎、圆周振动、垂直振动、振荡压路机、冲击压路机、智能压实技术及设备等;路面机械方面综述了沥青混凝土搅拌设备、沥青混凝土摊铺机、水泥混凝土搅拌设备、水泥混凝土摊铺设备、稳定土拌和设备等;桥梁机械方面综述了架桥机、移动模架造桥机等;隧道机械方面综述了喷锚机械、盾构机等;养护机械方面综述了清扫设备、除冰融雪设备、检测设备、铣刨机、再生设备、封层车、水泥路面修补设备、喷锚机械等。该综述可为筑路机械学科的学术研究提供新的视角和基础资料。
《中国公路学报》编辑部[5](2017)在《中国汽车工程学术研究综述·2017》文中研究表明为了促进中国汽车工程学科的发展,从汽车噪声-振动-声振粗糙度(Noise,Vibration,Harshness,NVH)控制、汽车电动化与低碳化、汽车电子化、汽车智能化与网联化以及汽车碰撞安全技术5个方面,系统梳理了国内外汽车工程领域的学术研究进展、热点前沿、存在问题、具体对策及发展前景。汽车NVH控制方面综述了从静音到声品质、新能源汽车NVH控制技术、车身与底盘总成NVH控制技术、主动振动控制技术等;汽车电动化与低碳化方面综述了传统汽车动力总成节能技术、混合动力电动汽车技术等;汽车电子化方面综述了汽车发动机电控技术、汽车转向电控技术、汽车制动电控技术、汽车悬架电控技术等;汽车智能化与网联化方面综述了中美智能网联汽车研究概要、复杂交通环境感知、高精度地图及车辆导航定位、汽车自主决策与轨迹规划、车辆横向控制及纵向动力学控制、智能网联汽车测试,并给出了先进驾驶辅助系统(ADAS)、车联网和人机共驾等典型应用实例解析;汽车碰撞安全技术方面综述了整车碰撞、乘员保护、行人保护、儿童碰撞安全与保护、新能源汽车碰撞安全等。该综述可为汽车工程学科的学术研究提供新的视角和基础资料。
张永辉[6](2006)在《铝粉氮气雾化分级过程集成优化控制系统研究》文中研究指明铝粉氮气雾化生产工艺具有细粉率高,铝粉活性好,球形铝粉成型率高,生产安全等优点,为很多企业所采用。铝粉氮气雾化和分级工艺过程是一个复杂的工业过程,包括很多物理变化、化学反应以及一些动力学过程,具有强烈的非线性、强耦合、大滞后和不确定性等特点。生产过程中的关键控制变量雾化炉铝液温度用常规控制方法效果很差,直接影响了铝粉的细粉率和产量。作为生产质量指标的铝粉粒度分布无法直接实时地测量,给过程建模和优化控制带来了极大的困难。目前铝粉氮气雾化分级过程控制技术落后、自动化水平很低,过程优化控制问题成为提高氮气雾化铝粉细粉率和产品质量的一个瓶颈。本文以吉化集团高碳醇厂的铝粉生产装置改造项目为背景,在对铝粉氮气雾化和分级过程的机理深入分析的基础上,提出利用集成优化控制技术来实现铝粉氮气雾化分级过程的实时有效的控制和过程优化,并研制一套铝粉氮气雾化分级过程集成优化控制系统并成功应用于工业现场。本文的研究内容如下: 1.在分析铝粉氮气雾化分级过程机理特性和工艺流程特点的基础上,提出了以铝粉粒度分布为目标的铝粉氮气雾化分级过程集成优化控制系统的整体方案设计,采用IPC工控机+PLC+现场总线I/O模块的形式,利用工业以太网技术,组成三层分布式控制系统,实现了铝粉雾化、氮气循环、铝粉分级等全过程的集成优化控制,保证了生产过程的安全运行,减少了氮气和燃料气的消耗,应用实施结果验证了设计方案的有效性。 2.由于雾化炉铝液温度受许多不确定因素的影响波动很大,具有很强的非线性和大滞后等特性,难以建立确切的数学模型,其控制问题很难利用传统的控制理论和方法解决。本文针对雾化炉的铝液温度变化特性,结合模糊控制器和PID控制器的特点,设计了一种模糊-PID复合控制器,利用加权因子,将模糊控制器的输出和PID控制器的输出加权综合,使得控制器在误差较大时,主要由模糊控制器起作用,具有较快的响应能力,而在误差较小时主要由PID控制器起作用,具有较高的控制精度,实现了模糊控制器和PID控制器输出的连续平滑切换,在现场应用中取得了较好的控制效果。 3.铝粉氮气雾化生产过程中,作为质量指标和控制目标的铝粉粒度分布很难用传统的方法在线实时测量。本文提出利用RBF神经网络,通过测量与铝粉粒度分布有直接影响的其它变量,建立起铝粉粒度分布的软测量模型,实现了铝粉粒度分布的实时在线预测,为实施铝粉雾化过程优化控制提供了建模基础。 4.铝粉氮气雾化生产过程中,工况条件是不断变化的,根据专家经验得出的各工艺参数设定点不一定能保证雾化效果达到最优,因此需要对铝粉氮气雾化过程实施优化
韩英举[7](2021)在《基于数据驱动的涡扇发动机非线性控制器设计研究》文中认为涡扇发动机以其高推进效率和低耗油率在民用和军用航空领域有着广泛应用。然而,随着飞机对推进系统性能要求的提高,涡扇发动机结构愈加复杂,系统非线性和变量间耦合特性也相应增强,因此需要探索先进控制器设计方法以满足其性能和安全要求。近年来,随着人工智能技术的发展,基于数据驱动的控制器设计方法在航空发动机领域逐渐发展。因此,本文依托某部委重点项目“XX发动机基础问题研究”,针对某型涡扇发动机开展基于数据驱动的非线性控制器设计研究。主要研究内容包括:针对涡扇发动机直接控制器设计问题,提出了一种基于自适应增强的控制器设计方法。首先,将最小二乘支持向量机引入模型参考控制器设计架构,并基于凸优化方法完成控制器设计,从而保证了控制器的渐近收敛性。其次,采用多个基础控制器结合自适应增强算法,设计基于自适应增强的涡扇发动机控制器。仿真结果表明,该控制器设计可降低涡扇发动机稳态控制误差,由于引入自适应增强算法,有效抑制了过拟合。针对涡扇发动机多变量控制器设计问题,提出一种基于滑动模态变结构的控制方法。首先,分析了该型涡扇发动机控制参数、目标,确定了仿真工作点。其次,设计了涡扇发动机滑动模态控制器控制燃油流量和尾喷管面积,采用带饱和的幂次趋近律防止切换面抖振,通过鲸鱼优化算法(Whale Optimization Algorithm,WOA)优化增益和饱和边界层。硬件在环验证结果表明,该算法可保证实时性要求,稳态误差小于1%,具有良好控制性能。为了进一步提高涡扇发动机多变量控制器性能,本文提出了两种基于数据驱动的涡扇发动机多变量控制器设计方法。首先,提出了一种RBF神经网络滑模控制器,通过RBF神经网络对发动机系统不可测扰动做出实时补偿。仿真结果表明,所提方法能提高系统响应时间,相较经典滑模控制,稳态误差较小。其次,提出了一种因果卷积神经网络控制器,利用正则化降低过拟合,采用WOA优化初始权及学习率。仿真结果表明,所提方法可进一步降低稳态误差,满足涡扇发动机控制要求。
孙传扬[8](2021)在《智能汽车紧急避撞轨迹规划与路径跟踪控制策略研究》文中研究指明智能汽车是先进传感与人工智能等新兴技术融合发展的产物,是具有自动驾驶功能的新一代汽车,同时也是解决交通事故、车辆利用率低与交通拥堵等问题的关键,发展智能汽车对于加速我国汽车产业转型升级具有重要意义。智能汽车紧急避撞功能的研究对于智能驾驶技术的推广应用、车辆行驶安全性能的提升等具有重要的推动作用,同时对于发展车辆运动规划与运动控制等技术具有积极意义。本文以智能汽车为研究对象,重点开展了紧急避撞工况下轨迹规划策略、路径跟踪控制系统建模、路径跟踪控制策略设计与优化等方面的研究。本文针对对向车辆侵入自车行驶车道引起的车辆碰撞事故,开展了智能汽车紧急避撞轨迹规划策略的研究。研究了对向车辆轨迹预测算法与自车轨迹规划功能开启的触发条件,提出了融合减速转向与定速转向等避撞方式的候选避撞轨迹规划方法;设计了基于模型预测的路径规划算法、具有“最小速度”代价函数的五次多项式速度规划算法与基于BP神经网络的目标状态确定方法,完成了对避撞轨迹的规划;设计了具有分层结构的碰撞检测算法与车辆碰撞位置预测算法;提出了结合碰撞速度变化量与车辆碰撞类型的自车碰撞严重度预测算法以及针对无碰撞候选轨迹的多目标评价函数,确定了综合性能最优的智能汽车避撞轨迹。本文建立了智能汽车路径跟踪控制系统的状态空间模型,该模型由二自由度车辆模型、轮胎侧向力计算模型及路径跟踪误差模型等三部分组成。建立了智能汽车侧向动力学模型,设计了应用Fiala轮胎模型与前轮侧向力数值查表的期望前轮转向角数值计算方法;研究了轮胎模型线性化过程中提高轮胎非线性特征描述精度的方法,提出了基于两点仿射近似的后轮侧向力线性化计算模型;建立了基于横摆角偏差的智能汽车路径跟踪误差模型,完成了智能汽车路径跟踪控制系统状态空间模型的建立。研究了基于车辆转向工况识别的复合跟踪误差模型,开发了智能汽车紧急避撞路径跟踪控制策略。建立了MPC控制算法的预测模型、代价函数以及MPC路径跟踪控制算法;研究了跟踪误差模型对车辆路径跟踪控制性能的影响机理,得出了兼顾车辆在稳态与瞬态转向工况下路径跟踪精度的复合跟踪误差模型;研究了可表征车辆横向运动状态及其变化趋势的特征参数,设计了采用模糊逻辑与加权平均方法的转向工况识别算法;研究了智能汽车的行驶稳定性约束,建立了基于复合跟踪误差模型的智能汽车紧急避撞路径跟踪控制策略。开展了智能汽车路径跟踪控制策略的鲁棒优化研究,建立了Tube-RMPC路径跟踪鲁棒优化控制策略。分析了智能汽车行驶环境中强侧向风等典型的不确定性,建立了带不确定性的路径跟踪控制系统模型;研究了路径跟踪控制系统Tube不变集的设计要求,提出了基于控制矩阵多面体分割的Tube不变集计算方法,运用离线凸包运算与N步可达集运算,获得了紧缩的Tube不变集序列;计算了Tube-RMPC算法的闭环反馈增益、终端代价函数、终端约束集以及名义路径跟踪控制系统的容许集,建立了Tube-RMPC路径跟踪鲁棒控制策略。开展了智能汽车紧急避撞轨迹规划与路径跟踪控制策略的仿真试验研究。仿真试验结果表明:所提出的基于复合跟踪误差模型的控制策略能在车辆接近操作极限的紧急避撞工况下将跟踪误差控制在0.1m以内,并且与广泛使用的基于横摆角偏差跟踪误差模型的控制策略相比,该策略将智能汽车路径跟踪的侧向位置偏差均方根值减小了28.6%。所提出的Tube-RMPC路径跟踪鲁棒控制策略能在路面附着系数识别误差为0.3、侧向风速为25m/s的条件下,将紧急避撞工况下智能汽车的路径跟踪误差控制在0.2m以内,实现了智能汽车的稳定控制;对设计的轨迹规划策略的触发条件、碰撞检测算法、碰撞严重度预测函数与候选轨迹多目标综合评价函数等算法的有效性进行了验证;仿真试验表明,所设计的紧急避撞轨迹规划策略能够使智能汽车在对向车辆侵入自车道的场景下,以较大的避撞安全余量实现碰撞避免或以较小的预测碰撞严重度实现碰撞缓解。图91幅,表13个,参考文献200篇。
乔菁菁[9](2020)在《递阶控制在挤压制造工艺中的应用研究》文中进行了进一步梳理随着工业和控制理论的发展,为了实现利益最大化,厂商对于制造效率和良品率的要求与日俱增。作为机械制造的重要组成部分,挤压制造在机械制造中应用非常广泛。与其他制造工艺相比,挤压制造能够创建非常复杂的横截面,但是挤压制造的流程十分复杂,对控制技术的要求比较高。在这样的要求下,递阶控制作为一种性能优越的控制技术,可以保证加工制造的设备具有出色的制造质量和可靠的制造能力。在本文中,首先通过一种新的具有多个目标的运动控制系统的分层轮廓控制方法,将目标分配到轴同步的较高级别和单个轴跟踪的底部级别两个决策级别,使内部模型原理与最优控制相结合,并扩展用于端铣工艺的力/位置控制。结合递阶控制的相关理论,引入分层最优控制的递阶控制器来控制具有不断变化的目标的复杂系统。该控制器包括基于非线性模型预测控制器的过程级和用于挤出制造过程中自动控制目标变化的监控级。同时通过仿真研究调节轴位置和加工力误差,将更高级别的加工力调节传播到底层。利用具有成本函数的最优控制技术,对各个轴位置误差、加工力误差和控制信号使用进行加权,通过模拟案例研究验证控制器性能。为了分析重点变化对轴位置和加工力跟踪的影响,进行了9次模拟研究,其中高度强调轴跟踪增加到5(即高度强调),发现随着轴位置误差稳定时间的增加,相对恒定的轮廓误差量值和瞬态加工力误差随之减小。本次研究发现对于运动控制系统,当轮廓跟踪很重要时,即使在轴向控制信号饱和的情况下,控制器也能减小轮廓误差。此外,在尖锐边缘的加工过程中,过大的挤压力会导致断裂,通过使用本文所设计的递阶控制器,挤压力可以保证有界的同时不牺牲位置跟踪性能。
李洋[10](2020)在《基于CPS的人机协同纵向跟车建模与控制研究》文中提出随着汽车自动化等级越来越高,驾驶自动化系统对车辆的控制能力越来越强,驾驶员正逐渐从一个操作者变成一个监督者或使用者。然而受交通问题复杂性、感知设备可靠性和价格成本制约性的影响,真正意义的全工况自动驾驶短期内还很难实现,未来很长一段时间,智能汽车将处于人机共驾阶段。人机共驾模式下,由于人机在感知手段、决策机制和控制执行方式上存在本质差异,人机协同不佳必然会带来人机交互失调、控制作用冲突、车辆失稳失控等问题。从信息物理融合的视角看,此时车辆信息系统和物理系统的交织与融合更为复杂,前后车信息物理融合特性对车辆安全稳定行驶的影响更加明显。另一方面,对比驾驶员和驾驶自动化系统的特点可以发现,驾驶员在场景学习、趋势判断等方面具有独特的优势,驾驶自动化系统相比与人类驾驶员,虽然学习能力弱、场景自适应性差,但却具有反应快速、控制精准、行为一致性好等优势,人类驾驶员和驾驶自动化系统之间具有很强的互补性。因此,充分发挥人类智能和机器智能各自优势,构建人机协同控制系统,优化人机协同策略,不仅可以有效解决自动驾驶面临的驾驶员不在环问题和安全接管挑战,而且可为人机混合增强智能理论的发展和应用提供一定程度的参考和借鉴。为此,本文结合人机共驾发展前沿,以典型纵向跟车过程为对象,从信息物理系统的视角出发,考虑车辆惯性、通信条件、传感器数据采集特性等信息物理因素及感知不敏感、响应时延、决策模糊等驾驶员人因素的影响,在分别构建面向人机共驾的驾驶员跟车模型和自动驾驶跟车模型基础上,基于人机分时协同、分工协同和分层协同的思想对人机协同跟车建模与控制进行系统研究,以期充分发挥人机各自优势,提高智能汽车行驶的安全性、稳定性和舒适性。具体而言,论文的研究工作主要包括以下几个方面:(1)以典型纵向跟车过程为对象,深入分析人类驾驶员和驾驶自动化系统在感知、决策和执行方式上的特点和差异,考虑驾驶员对距离感知的不敏感性,结合驾驶员反应时延的统计分布,在智能驾驶员模型的基础上构建了一个改进的驾驶员跟车模型,通过基于描述函数法的非线性稳定性分析,获得了具有死区和死区继电并联非线性特性的模型稳定性条件;考虑自动驾驶传感器数据采集快速精准的特性,基于前车运动短时预测,在全速度差模型的基础上,构建了一个面向自动驾驶的跟车模型,通过局部稳定性分析、线性稳定性分析和非线性稳定性分析,获得了模型的稳定条件和预测误差对跟车性能的影响规律。(2)针对自动驾驶导致驾驶员不在环的问题,在建立的驾驶员纵向跟车模型和自动驾驶纵向跟车模型的基础上,基于人机分时协同的思想,提出了一种基于模型预测控制的人机协同切换驾驶控制方案,构建了人机协同切换驾驶跟车模型。基于Laypunov稳定性分析和线性矩阵不等式方法,得到了保证切换系统稳定的充分条件。通过最小化由接管风险、驾驶负荷、跟车误差和舒适性构成的总体指标,实现了驾驶权切换信号的整体优化。仿真结果表明,人机协同切换驾驶控制方案的总体性能指标比单纯人工跟车行驶和单纯自动驾驶跟车行驶都要小,同时优化算法耗时较短,能够满足工程实际要求。(3)针对人机协同切换驾驶控制方案无法完全避免驾驶员不在环和不定时切换影响驾驶体验的问题,基于人机分工协同的思想,提出了一种人机混合智能分工协同控制方案,驾驶自动化系统控制车速跟随前车车速,驾驶员根据车速对车间距进行调节,人机分工协同完成跟车任务。针对自动车速跟随控制,提出了一种前馈-反馈控制策略,实现了基于H∞次优控制的控制器参数设计,并给出了基于仿人智能控制的控制器精细化调节方法。针对驾驶员间距调节任务,基于李雅普诺夫函数的分析方法,证明了驾驶员基于合适的变增益反馈控制,可以保证人机混合智能协同系统的稳定性。基于驾驶模拟器的车辆跟随实验结果表明,纵向跟车的人机混合智能分工协同控制方案可以在降低车间距误差的同时,使驾驶员以较小的操作负荷保持在控制回路中。(4)针对人机混合智能分工协同控制方案会出现人机作用冲突的问题,基于人机分层协同的思想,提出了一种人机双闭环协同跟车控制策略。外环驾驶员根据车速对车间距进行调节,控制作用与前车车速综合生成内环期望速度,内环驾驶自动化系统控制车速实现对期望速度的快速跟踪。内环考虑车辆动力学参数的不确定性,实现了基于H∞状态反馈控制的控制器参数设计。外环考虑驾驶员对车间距误差感知和反应的模糊特性,实现了基于反馈控制思想的间距调节策略设计和相应的稳定性证明。仿真实验结果表明,该策略可综合提升智能汽车跟车行驶的稳定性、安全性和舒适性,同时因人机处于不同的控制层,可有效避免人机作用冲突问题。综上所述,本文基于信息物理系统的视角,在分别建立驾驶员纵向跟车模型和自动驾驶纵向跟车模型的基础上,基于人机分时协同、分工协同和分层协同的思想,深入地研究了人机协同纵向跟车建模与控制方法,研究成果既可为优化人机协同策略,提升智能汽车整体性能提供理论指导,又可为缓解交通拥堵问题、促进CPS的理论发展和应用提供参考和借鉴。
二、STEADY-STATE HIERARCHICAL INTELLIGENT CONTROL OF LARGE-SCALE INDUSTRIAL PROCESSES(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、STEADY-STATE HIERARCHICAL INTELLIGENT CONTROL OF LARGE-SCALE INDUSTRIAL PROCESSES(论文提纲范文)
(1)S黄金冶炼公司的数字化生产管理系统升级改造(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 课题研究的背景及意义 |
1.2 国内外研究现状 |
1.3 主要研究内容 |
1.4 研究方法和技术路线 |
2 相关理论依据 |
2.1 数字化工厂 |
2.2 精益管控理论 |
2.3 计算机仿真理论 |
3 S黄金冶炼公司冶炼工厂现状及问题分析 |
3.1 公司情况简介 |
3.2 数字化冶炼工厂发展现状 |
3.3 存在问题 |
4 数字化工厂建设的思路与关键技术 |
4.1 数据采集技术 |
4.2 数据大脑智能运算技术 |
4.3 网络化智能控制智能决策技术 |
5 数字化工厂精益管控 |
5.1 精益管控框架的提出 |
5.2 精益管控平台的搭建 |
5.3 管理体系与人才培养规划 |
6 数字化工厂的模拟仿真 |
6.1 仿真优化技术的提出 |
6.2 仿真优化模型的建立 |
6.3 仿真的结果的说明 |
7 主要结论与展望 |
7.1 主要成果结论 |
7.2 不足和展望 |
参考文献 |
作者简介 |
致谢 |
(3)3D打印技术专业“三教”改革探索(论文提纲范文)
引言 |
1 3D打印技术专业“三教”面临的突出问题 |
1.1 师资团队的教学素养相对偏差 |
1.2 3D打印技术专业教材不成体系,资源匮乏 |
1.3 教法难以提升学生参与的主动性 |
2 3D打印技术应用专业“三教”改革措施 |
2.1 通过“名师引领、双元结构、分工协作”的准则塑造团队 |
2.1.1 依托有较强影响力的带头人,有效开发名师所具备的引领示范效果 |
2.1.2 邀请大师授教,提升人才的技术与技能水准 |
2.2 推进“学生主体、育训结合、因材施教”的教材变革 |
2.2.1 设计活页式3D打印教材 |
2.2.2 灵活使用信息化技术,形成立体化的教学 |
2.3 创新推行“三个课堂”教学模式,推进教法改革 |
2.3.1 采取线上、线下的混合式教法 |
2.3.2 构建与推进更具创新性的“三个课堂”模式 |
(4)中国筑路机械学术研究综述·2018(论文提纲范文)
索引 |
0引言 (长安大学焦生杰教授提供初稿) |
1 土石方机械 |
1.1 推土机 (长安大学焦生杰教授、肖茹硕士生, 吉林大学赵克利教授提供初稿;长安大学焦生杰教授统稿) |
1.1.1 国内外研究现状 |
1.1.1. 1 国外研究现状 |
1.1.1. 2 中国研究现状 |
1.1.2 研究的热点问题 |
1.1.3 存在的问题 |
1.1.4 研究发展趋势 |
1.2 挖掘机 (山河智能张大庆高级工程师团队、华侨大学林添良副教授提供初稿;山河智能张大庆高级工程师统稿) |
1.2.1 挖掘机节能技术 (山河智能张大庆高级工程师、刘昌盛博士、郝鹏博士, 华侨大学林添良副教授, 中南大学胡鹏博士生、林贵堃硕士生提供初稿) |
1.2.1. 1 传统挖掘机动力总成节能技术 |
1.2.1. 2 新能源技术 |
1.2.1. 3 混合动力技术 |
1.2.2 挖掘机智能化与信息化 (山河智能张大庆高级工程师, 中南大学胡鹏、周烜亦博士生、李志勇、范诗萌硕士生提供初稿) |
1.2.2. 1 挖掘机辅助作业技术 |
1.2.2. 2 挖掘机故障诊断技术 |
1.2.2. 3 挖掘机智能施工技术 |
1.2.2. 4 挖掘机远程监控技术 |
1.2.2. 5 问题与展望 |
1.2.3 挖掘机轻量化与可靠性 (山河智能张大庆高级工程师、王德军副总工艺师, 中南大学刘强博士生、万宇阳硕士生提供初稿) |
1.2.3. 1 挖掘机轻量化研究 |
1.2.3. 2 挖掘机疲劳可靠性研究 |
1.2.3. 3 存在的问题与展望 |
1.2.4 挖掘机振动与噪声 (山河智能张大庆高级工程师, 中南大学刘强博士生、万宇阳硕士生提供初稿) |
1.2.4. 1 挖掘机振动噪声分类与产生机理 |
1.2.4. 2 挖掘机振动噪声信号识别现状和发展趋势 |
1.2.4. 3 挖掘机减振降噪技术现状和发展趋势 |
1.2.4. 4 挖掘机振动噪声存在问题与展望 |
1.3 装载机 (吉林大学秦四成教授, 博士生遇超、许堂虹提供初稿) |
1.3.1 装载机冷却系统散热技术研究 |
1.3.1. 1 国内外研究现状 |
1.3.1. 2 研究发展趋势 |
1.3.2 鱼和熊掌兼得的HVT |
1.3.2. 1 技术原理及结构特点 |
1.3.2. 2 技术优点 |
1.3.2. 3 国外研究现状 |
1.3.2. 4 中国研究现状 |
1.3.2. 5 发展趋势 |
1.3.2. 6 展望 |
1.4 平地机 (长安大学焦生杰教授、赵睿英高级工程师提供初稿) |
1.4.1 平地机销售情况与核心技术构架 |
1.4.2 国外平地机研究现状 |
1.4.2. 1 高效的动力传动技术 |
1.4.2. 2 变功率节能技术 |
1.4.2. 3 先进的工作装置电液控制技术 |
1.4.2. 4 操作方式与操作环境的人性化 |
1.4.2. 5 转盘回转驱动装置过载保护技术 |
1.4.2. 6 控制系统与作业过程智能化 |
1.4.2. 7 其他技术 |
1.4.3 中国平地机研究现状 |
1.4.4 存在问题 |
1.4.5 展望 |
2压实机械 |
2.1 静压压路机 (长安大学沈建军高级工程师提供初稿) |
2.1.1 国内外研究现状 |
2.1.2 存在问题及发展趋势 |
2.2 轮胎压路机 (黑龙江工程学院王强副教授提供初稿) |
2.2.1 国内外研究现状 |
2.2.2 热点研究方向 |
2.2.3 存在的问题 |
2.2.4 研究发展趋势 |
2.3 圆周振动技术 (长安大学沈建军高级工程师提供初稿) |
2.3.1 国内外研究现状 |
2.3.1. 1 双钢轮技术研究进展 |
2.3.1. 2 单钢轮技术研究进展 |
2.3.2 热点问题 |
2.3.3 存在问题 |
2.3.4 发展趋势 |
2.4 垂直振动压路机 (合肥永安绿地工程机械有限公司宋皓总工程师提供初稿) |
2.4.1 国内外研究现状 |
2.4.2 存在的问题 |
2.4.3 热点研究方向 |
2.4.4 研究发展趋势 |
2.5 振动压路机 (建设机械技术与管理杂志社万汉驰高级工程师提供初稿) |
2.5.1 国内外研究现状 |
2.5.1. 1 国外振动压路机研究历史与现状 |
2.5.1. 2 中国振动压路机研究历史与现状 |
2.5.1. 3 特种振动压实技术与产品的发展 |
2.5.2 热点研究方向 |
2.5.2. 1 控制技术 |
2.5.2. 2 人机工程与环保技术 |
2.5.2. 3 特殊工作装置 |
2.5.2. 4 振动力调节技术 |
2.5.2. 4. 1 与振动频率相关的调节技术 |
2.5.2. 4. 2 与振幅相关的调节技术 |
2.5.2. 4. 3 与振动力方向相关的调节技术 |
2.5.2. 5 激振机构优化设计 |
2.5.2. 5. 1 无冲击激振器 |
2.5.2. 5. 2 大偏心矩活动偏心块设计 |
2.5.2. 5. 3 偏心块形状优化 |
2.5.3 存在问题 |
2.5.3. 1 关于名义振幅的概念 |
2.5.3. 2 关于振动参数的设计与标注问题 |
2.5.3. 3 振幅均匀性技术 |
2.5.3. 4 起、停振特性优化技术 |
2.5.4 研究发展方向 |
2.6 冲击压路机 (长安大学沈建军高级工程师提供初稿) |
2.6.1 国内外研究现状 |
2.6.2 研究热点 |
2.6.3 主要问题 |
2.6.4 发展趋势 |
2.7 智能压实技术及设备 (西南交通大学徐光辉教授, 长安大学刘洪海教授、贾洁博士生, 国机重工 (洛阳) 建筑机械有限公司韩长太副总经理提供初稿;西南交通大学徐光辉教授统稿) |
2.7.1 国内外研究现状 |
2.7.2 热点研究方向 |
2.7.3 存在的问题 |
2.7.4 研究发展趋势 |
3路面机械 |
3.1 沥青混凝土搅拌设备 (长安大学谢立扬高级工程师、张晨光博士生、赵利军副教授提供初稿) |
3.1.1 国内外能耗研究现状 |
3.1.1. 1 烘干筒 |
3.1.1. 2 搅拌缸 |
3.1.1. 3 沥青混合料生产工艺与管理 |
3.1.2 国内外环保研究现状 |
3.1.2. 1 环保的宏观管理 |
3.1.2. 2 沥青烟 |
3.1.2. 3 排放因子 |
3.1.3 存在的问题 |
3.1.4 未来研究趋势 |
3.2 沥青混凝土摊铺机 (长安大学焦生杰教授、周小浩硕士生提供初稿) |
3.2.1 沥青混凝土摊铺机近几年销售情况 |
3.2.2 国内外研究现状 |
3.2.2. 1 国外沥青混凝土摊铺机发展现状 |
3.2.2. 2 中国沥青混凝土摊铺机的发展现状 |
3.2.2. 3 国内外行驶驱动控制技术 |
3.2.2. 4 国内外智能化技术 |
3.2.2. 5 国内外自动找平技术 |
3.2.2. 6 振捣系统的研究 |
3.2.2. 7 国内外熨平板的研究 |
3.2.2. 8 国内外其他技术的研究 |
3.2.3 存在的问题 |
3.2.4 研究的热点方向 |
3.2.5 发展趋势与展望 |
3.3 水泥混凝土搅拌设备 (长安大学赵利军副教授、冯忠绪教授、赵凯音博士生提供初稿;长安大学赵利军副教授统稿) |
3.3.1 国内外研究现状 |
3.3.1. 1 搅拌机 |
3.3.1. 2 振动搅拌技术 |
3.3.1. 3 搅拌工艺 |
3.3.1. 4 搅拌过程监控技术 |
3.3.2 存在问题 |
3.3.3 总结与展望 |
3.4 水泥混凝土摊铺设备 (长安大学胡永彪教授提供初稿) |
3.4.1 国内外研究现状 |
3.4.1. 1 作业机理 |
3.4.1. 2 设计计算 |
3.4.1. 3 控制系统 |
3.4.1. 4 施工技术 |
3.4.2 热点研究方向 |
3.4.3 存在的问题 |
3.4.4 研究发展趋势[466] |
3.5 稳定土厂拌设备 (长安大学赵利军副教授、李雅洁研究生提供初稿) |
3.5.1 国内外研究现状 |
3.5.1. 1 连续式搅拌机与搅拌工艺 |
3.5.1. 2 振动搅拌技术 |
3.5.2 存在问题 |
3.5.3 总结与展望 |
4桥梁机械 |
4.1 架桥机 (石家庄铁道大学邢海军教授提供初稿) |
4.1.1 公路架桥机的分类及结构组成 |
4.1.2 架桥机主要生产厂家及其典型产品 |
4.1.2. 1 郑州大方桥梁机械有限公司 |
4.1.2. 2 邯郸中铁桥梁机械设备有限公司 |
4.1.2. 3 郑州市华中建机有限公司 |
4.1.2. 4 徐州徐工铁路装备有限公司 |
4.1.3 大吨位公路架桥机 |
4.1.3. 1 LGB1600型导梁式架桥机 |
4.1.3. 2 TLJ1700步履式架桥机 |
4.1.3. 3 架桥机的规范与标准 |
4.1.4 发展趋势 |
4.1.4. 1 自动控制技术的应用 |
4.1.4. 2 智能安全监测系统的应用 |
4.1.4. 3 故障诊断技术的应用 |
4.2 移动模架造桥机 (长安大学吕彭民教授、陈一馨讲师, 山东恒堃机械有限公司秘嘉川工程师、王龙奉工程师提供初稿;长安大学吕彭民教授统稿) |
4.2.1 移动模架造桥机简介 |
4.2.1. 1 移动模架造桥机的分类及特点 |
4.2.1. 2 移动模架主要构造及其功能 |
4.2.1. 3 移动模架系统的施工原理与工艺流程 |
4.2.2 国内外研究现状 |
4.2.2. 1 国外研究状况 |
4.2.2. 2 国内研究状况 |
4.2.3 中国移动模架造桥机系列创新及存在的问题 |
4.2.3. 1 中国移动模架造桥机系列创新 |
4.2.3. 2 中国移动模架存在的问题 |
4.2.4 研究发展的趋势 |
5隧道机械 |
5.1 喷锚机械 (西安建筑科技大学谷立臣教授、孙昱博士生提供初稿) |
5.1.1 国内外研究现状 |
5.1.1. 1 混凝土喷射机 |
5.1.1. 2 锚杆钻机 |
5.1.2 存在的问题 |
5.1.3 热点及研究发展方向 |
5.2 盾构机 (中南大学易念恩实验师, 长安大学叶飞教授, 中南大学王树英副教授、夏毅敏教授提供初稿) |
5.2.1 盾构机类型 |
5.2.1. 1 国内外发展现状 |
5.2.1. 2 存在的问题与研究热点 |
5.2.1. 3 研究发展趋势 |
5.2.2 盾构刀盘 |
5.2.2. 1 国内外研究现状 |
5.2.2. 2 热点研究方向 |
5.2.2. 3 存在的问题 |
5.2.2. 4 研究发展趋势 |
5.2.3 盾构刀具 |
5.2.3. 1 国内外研究现状 |
5.2.3. 2 热点研究方向 |
5.2.3. 3 存在的问题 |
5.2.3. 4 研究发展趋势 |
5.2.4 盾构出渣系统 |
5.2.4. 1 螺旋输送机 |
5.2.4. 2 泥浆输送管路 |
5.2.5 盾构渣土改良系统 |
5.2.5. 1 国内外发展现状 |
5.2.5. 2 存在问题与研究热点 |
5.2.5. 3 研究发展趋势 |
5.2.6 壁后注浆系统 |
5.2.6. 1 国内外发展现状 |
5.2.6. 2 研究热点方向 |
5.2.6. 3 存在的问题 |
5.2.6. 4 研究发展趋势 |
5.2.7 盾构检测系统 |
5.2.7. 1 国内外研究现状 |
5.2.7. 2 热点研究方向 |
5.2.7. 3 存在的问题 |
5.2.7. 4 研究发展趋势 |
5.2.8 盾构推进系统 |
5.2.8. 1 国内外研究现状 |
5.2.8. 2 热点研究方向 |
5.2.8. 3 存在的问题 |
5.2.8. 4 研究发展趋势 |
5.2.9 盾构驱动系统 |
5.2.9. 1 国内外研究现状 |
5.2.9. 2 热点研究方向 |
5.2.9. 3 存在的问题 |
5.2.9. 4 研究发展趋势 |
6养护机械 |
6.1 清扫设备 (长安大学宋永刚教授提供初稿) |
6.1.1 国外研究现状 |
6.1.2 热点研究方向 |
6.1.2. 1 单发动机清扫车 |
6.1.2. 2 纯电动清扫车 |
6.1.2. 3 改善人机界面向智能化过渡 |
6.1.3 存在的问题 |
6.1.3. 1 整车能源效率偏低 |
6.1.3. 2 作业效率低 |
6.1.3. 3 除尘效率低 |
6.1.3. 4 静音水平低 |
6.1.4 研究发展趋势 |
6.1.4. 1 节能环保 |
6.1.4. 2 提高作业性能及效率 |
6.1.4. 3 提高自动化程度及路况适应性 |
6.2 除冰融雪设备 (长安大学高子渝副教授、吉林大学赵克利教授提供初稿;长安大学高子渝副教授统稿) |
6.2.1 国内外除冰融雪设备研究现状 |
6.2.1. 1 融雪剂撒布机 |
6.2.1. 2 热力法除冰融雪机械 |
6.2.1. 3 机械法除冰融雪机械 |
6.2.1. 4 国外除冰融雪设备技术现状 |
6.2.1. 5 中国除冰融雪设备技术现状 |
6.2.2 中国除冰融雪机械存在的问题 |
6.2.3 除冰融雪机械发展趋势 |
6.3 检测设备 (长安大学叶敏教授、张军讲师提供初稿) |
6.3.1 路面表面性能检测设备 |
6.3.1. 1 国外路面损坏检测系统 |
6.3.1. 2 中国路面损坏检测系统 |
6.3.2 路面内部品质的检测设备 |
6.3.2. 1 新建路面质量评价设备 |
6.3.2. 2 砼路面隐性病害检测设备 |
6.3.2. 3 沥青路面隐性缺陷的检测设备 |
6.3.3 研究热点与发展趋势 |
6.4 铣刨机 (长安大学胡永彪教授提供初稿) |
6.4.1 国内外研究现状 |
6.4.1. 1 铣削转子动力学研究 |
6.4.1. 2 铣削转子刀具排列优化及刀具可靠性研究 |
6.4.1. 3 铣刨机整机参数匹配研究 |
6.4.1. 4 铣刨机转子驱动系统研究 |
6.4.1. 5 铣刨机行走驱动系统研究 |
6.4.1. 6 铣刨机控制系统研究 |
6.4.1. 7 铣刨机路面工程应用研究 |
6.4.2 热点研究方向 |
6.4.3 存在的问题 |
6.4.4 研究发展趋势 |
6.4.4. 1 整机技术 |
6.4.4. 2 动力技术 |
6.4.4. 3 传动技术 |
6.4.4. 4 控制与信息技术 |
6.4.4. 5 智能化技术 |
6.4.4. 6 环保技术 |
6.4.4. 7 人机工程技术 |
6.5 再生设备 (长安大学顾海荣、马登成副教授提供初稿;顾海荣副教授统稿) |
6.5.1 厂拌热再生设备 |
6.5.1. 1 国内外研究现状 |
6.5.1. 2 热点研究方向 |
6.5.1. 3 存在的问题 |
6.5.1. 4 研究发展趋势 |
6.5.2 就地热再生设备 |
6.5.2. 1 国内外研究现状 |
6.5.2. 2 热点研究方向 |
6.5.2. 3 存在的问题 |
6.5.2. 4 研究发展趋势 |
6.5.3 冷再生设备 |
6.5.3. 1 国内外研究现状 |
6.5.3. 2 热点研究方向 |
6.6 封层车 (长安大学焦生杰教授、杨光兴硕士生提供初稿) |
6.6.1 前言 |
6.6.2 同步碎石封层技术与设备 |
6.6.2. 1 同步碎石封层技术简介 |
6.6.2. 2 国外研究现状 |
6.6.2. 3 中国研究现状 |
6.6.2. 4 研究方向 |
6.6.2. 5 存在的问题 |
6.6.3 稀浆封层技术与设备 |
6.6.3. 1 稀浆封层技术简介 |
6.6.3. 2 国外研究现状 |
6.6.3. 3 中国发展现状 |
6.6.3. 4 热点研究方向 |
6.6.3. 5 存在的问题 |
6.6.4 雾封层技术与设备 |
6.6.4. 1 雾封层技术简介 |
6.6.4. 2 国外发展现状 |
6.6.4. 3 中国发展现状 |
6.6.4. 4 热点研究方向 |
6.6.4. 5 存在的问题 |
6.6.5 研究发展趋势 |
6.7 水泥路面修补设备 (长安大学叶敏教授、窦建明博士生提供初稿) |
6.7.1 技术简介 |
6.7.1. 1 施工技术 |
6.7.1. 2 施工机械 |
6.7.1. 3 共振破碎机工作原理 |
6.7.2 共振破碎机研究现状 |
6.7.2. 1 国外研究发展现状 |
6.7.2. 2 中国研究发展现状 |
6.7.3 研究热点及发展趋势 |
6.7.3. 1 研究热点 |
6.7.3. 2 发展趋势 |
7 结语 (长安大学焦生杰教授提供初稿) |
(5)中国汽车工程学术研究综述·2017(论文提纲范文)
索引 |
0引言 |
1汽车NVH控制 (长安汽车工程研究院庞剑总工程师统稿) |
1.1从静音到声品质 (重庆大学贺岩松教授提供初稿) |
1.1.1国内外研究现状 |
1.1.1.1声品质主观评价 |
1.1.1.2声品质客观评价 |
1.1.1.3声品质主客观统一模型 |
1.1.2存在的问题 |
1.1.3研究发展趋势 |
1.2新能源汽车NVH控制技术 |
1.2.1驱动电机动力总成的NVH技术 (同济大学左曙光教授、林福博士生提供初稿) |
1.2.1.1国内外研究现状 |
1.2.1.2热点研究方向 |
1.2.1.3存在的问题与展望 |
1.2.2燃料电池发动机用空压机的NVH技术 (同济大学左曙光教授、韦开君博士生提供初稿) |
1.2.2.1国内外研究现状 |
1.2.2.2存在的问题 |
1.2.2.3总结与展望 |
1.3车身与底盘总成NVH控制技术 |
1.3.1车身与内饰 (长安汽车工程研究院庞剑总工程师提供初稿) |
1.3.1.1车身结构 |
1.3.1.2声学包装 |
1.3.2制动系 (同济大学张立军教授、徐杰博士生、孟德建讲师提供初稿) |
1.3.2.1制动抖动 |
1.3.2.2制动颤振 |
1.3.2.3制动尖叫 |
1.3.2.4瓶颈问题与未来趋势 |
1.3.3轮胎 (清华大学危银涛教授、杨永宝博士生、赵崇雷硕士生提供初稿) |
1.3.3.1轮胎噪声机理研究 |
1.3.3.2轮胎噪声计算模型 |
1.3.3.3轮胎噪声的测量手段 |
1.3.3.4降噪方法 |
1.3.3.5问题与展望 |
1.3.4悬架系 (吉林大学庄晔副教授提供初稿) |
1.3.4.1悬架系NVH问题概述 |
1.3.4.2悬架系的动力学建模与NVH预开发 |
1.3.4.3悬架系的关键部件NVH设计 |
1.3.4.4悬架NVH设计整改 |
1.4主动振动控制技术 (重庆大学郑玲教授提供初稿) |
1.4.1主动和半主动悬架技术 |
1.4.1.1主动悬架技术 |
1.4.1.2半主动悬架技术 |
1.4.2主动和半主动悬置技术 |
1.4.2.1主动悬置技术 |
1.4.2.2半主动悬置技术 |
1.4.3问题及发展趋势 |
2汽车电动化与低碳化 (江苏大学何仁教授统稿) |
2.1传统汽车动力总成节能技术 (同济大学郝真真博士生、倪计民教授提供初稿) |
2.1.1国内外研究现状 |
2.1.1.1替代燃料发动机 |
2.1.1.2高效内燃机 |
2.1.1.3新型传动方式 |
2.1.2存在的主要问题 |
2.1.3重点研究方向 |
2.1.4发展对策及趋势 |
2.2混合动力电动汽车技术 (重庆大学胡建军教授、秦大同教授, 彭航、周星宇博士生提供初稿) |
2.2.1国内外研究现状 |
2.2.2存在的问题 |
2.2.3重点研究方向 |
2.3新能源汽车技术 |
2.3.1纯电动汽车技术 (长安大学马建、余强、汪贵平教授, 赵轩、李耀华副教授, 许世维、唐自强、张一西研究生提供初稿) |
2.3.1.1动力电池 |
2.3.1.2分布式驱动电动汽车驱动控制技术 |
2.3.1.3纯电动汽车制动能量回收技术 |
2.3.2插电式混合动力汽车技术 (重庆大学胡建军、秦大同教授, 彭航、周星宇博士生提供初稿) |
2.3.2.1国内外研究现状 |
2.3.2.2存在的问题 |
2.3.2.3热点研究方向 |
2.3.2.4研究发展趋势 |
2.3.3燃料电池电动汽车技术 (北京理工大学王震坡教授、邓钧君助理教授, 北京重理能源科技有限公司高雷工程师提供初稿) |
2.3.3.1国内外技术发展现状 |
2.3.3.2关键技术及热点研究方向 |
2.3.3.3制约燃料电池汽车发展的关键因素 |
2.3.3.4燃料电池汽车的发展趋势 |
3汽车电子化 (吉林大学宗长富教授统稿) |
3.1汽车发动机电控技术 (北京航空航天大学杨世春教授、陈飞博士提供初稿) |
3.1.1国内外研究现状 |
3.1.2重点研究方向 |
3.1.2.1汽车发动机燃油喷射控制技术 |
3.1.2.2汽车发动机涡轮增压控制技术 |
3.1.2.3汽车发动机电子节气门控制技术 |
3.1.2.4汽车发动机点火控制技术 |
3.1.2.5汽车发动机空燃比控制技术 |
3.1.2.6汽车发动机怠速控制技术 |
3.1.2.7汽车发动机爆震检测与控制技术 |
3.1.2.8汽车发动机先进燃烧模式控制技术 |
3.1.2.9汽车柴油发动机电子控制技术 |
3.1.3研究发展趋势 |
3.2汽车转向电控技术 |
3.2.1电动助力转向技术 (吉林大学宗长富教授、陈国迎博士提供初稿) |
3.2.1.1国内外研究现状 |
3.2.1.2重点研究方向和存在的问题 |
3.2.1.3研究发展趋势 |
3.2.2主动转向及四轮转向技术 (吉林大学宗长富教授、陈国迎博士提供初稿) |
3.2.2.1国内外研究现状 |
3.2.2.2研究热点和存在问题 |
3.2.2.3研究发展趋势 |
3.2.3线控转向技术 (吉林大学郑宏宇副教授提供初稿) |
3.2.3.1转向角传动比 |
3.2.3.2转向路感模拟 |
3.2.3.3诊断容错技术 |
3.2.4商用车电控转向技术 (吉林大学宗长富教授、赵伟强副教授, 韩小健、高恪研究生提供初稿) |
3.2.4.1电控液压转向系统 |
3.2.4.2电液耦合转向系统 |
3.2.4.3电动助力转向系统 |
3.2.4.4后轴主动转向系统 |
3.2.4.5新能源商用车转向系统 |
3.2.4.6商用车转向系统的发展方向 |
3.3汽车制动控制技术 (合肥工业大学陈无畏教授、汪洪波副教授提供初稿) |
3.3.1国内外研究现状 |
3.3.1.1制动系统元部件研发 |
3.3.1.2制动系统性能分析 |
3.3.1.3制动系统控制研究 |
3.3.1.4电动汽车研究 |
3.3.1.5混合动力汽车研究 |
3.3.1.6参数测量 |
3.3.1.7与其他系统耦合分析及控制 |
3.3.1.8其他方面 |
3.3.2存在的问题 |
3.4汽车悬架电控技术 (吉林大学庄晔副教授提供初稿) |
3.4.1电控悬架功能与评价指标 |
3.4.2电控主动悬架最优控制 |
3.4.3电控悬架其他控制算法 |
3.4.4电控悬架产品开发 |
4汽车智能化与网联化 (清华大学李克强教授、长安大学赵祥模教授共同统稿) |
4.1国内外智能网联汽车研究概要 |
4.1.1美国智能网联汽车研究进展 (美国得克萨斯州交通厅Jianming Ma博士提供初稿) |
4.1.1.1美国智能网联车研究意义 |
4.1.1.2网联车安全研究 |
4.1.1.3美国自动驾驶车辆研究 |
4.1.1.4智能网联自动驾驶车 |
4.1.2中国智能网联汽车研究进展 (长安大学赵祥模教授、徐志刚副教授、闵海根、孙朋朋、王振博士生提供初稿) |
4.1.2.1中国智能网联汽车规划 |
4.1.2.2中国高校及研究机构智能网联汽车开发情况 |
4.1.2.3中国企业智能网联汽车开发情况 |
4.1.2.4存在的问题 |
4.1.2.5展望 |
4.2复杂交通环境感知 |
4.2.1基于激光雷达的环境感知 (长安大学付锐教授、张名芳博士生提供初稿) |
4.2.1.1点云聚类 |
4.2.1.2可通行区域分析 |
4.2.1.3障碍物识别 |
4.2.1.4障碍物跟踪 |
4.2.1.5小结 |
4.2.2车载摄像机等单传感器处理技术 (武汉理工大学胡钊政教授、陈志军博士, 长安大学刘占文博士提供初稿) |
4.2.2.1交通标志识别 |
4.2.2.2车道线检测 |
4.2.2.3交通信号灯检测 |
4.2.2.4行人检测 |
4.2.2.5车辆检测 |
4.2.2.6总结与展望 |
4.3高精度地图及车辆导航定位 (武汉大学李必军教授、长安大学徐志刚副教授提供初稿) |
4.3.1国内外研究现状 |
4.3.2当前研究热点 |
4.3.2.1高精度地图的采集 |
4.3.2.2高精度地图的地图模型 |
4.3.2.3高精度地图定位技术 |
4.3.2.4基于GIS的路径规划 |
4.3.3存在的问题 |
4.3.4重点研究方向与展望 |
4.4汽车自主决策与轨迹规划 (清华大学王建强研究员、李升波副教授、忻隆博士提供初稿) |
4.4.1驾驶人决策行为特性 |
4.4.2周车运动轨迹预测 |
4.4.3智能汽车决策方法 |
4.4.4自主决策面临的挑战 |
4.4.5自动驾驶车辆的路径规划算法 |
4.4.5.1路线图法 |
4.4.5.2网格分解法 |
4.4.5.3 Dijistra算法 |
4.4.5.4 A*算法 |
4.4.6路径面临的挑战 |
4.5车辆横向控制及纵向动力学控制 |
4.5.1车辆横向控制结构 (华南理工大学游峰副教授, 初鑫男、谷广研究生, 中山大学张荣辉研究员提供初稿) |
4.5.1.1基于经典控制理论的车辆横向控制 (PID) |
4.5.1.2基于现代控制理论的车辆横向控制 |
4.5.1.3基于智能控制理论的车辆横向控制 |
4.5.1.4考虑驾驶人特性的车辆横向控制 |
4.5.1.5面临的挑战 |
4.5.2动力学控制 (清华大学李升波副研究员、李克强教授、徐少兵博士提供初稿) |
4.5.2.1纵向动力学模型 |
4.5.2.2纵向稳定性控制 |
4.5.2.3纵向速度控制 |
4.5.2.4自适应巡航控制 |
4.5.2.5节油驾驶控制 |
4.6智能网联汽车测试 (中国科学院自动化研究所黄武陵副研究员、王飞跃研究员, 清华大学李力副教授, 西安交通大学刘跃虎教授、郑南宁院士提供初稿) |
4.6.1智能网联汽车测试研究现状 |
4.6.2智能网联汽车测试热点研究方向 |
4.6.2.1智能网联汽车测试内容研究 |
4.6.2.2智能网联汽车测试方法 |
4.6.2.3智能网联汽车的测试场地建设 |
4.6.3智能网联汽车测试存在的问题 |
4.6.4智能网联汽车测试研究发展趋势 |
4.6.4.1智能网联汽车测试场地建设要求 |
4.6.4.2智能网联汽车测评方法的发展 |
4.6.4.3加速智能网联汽车测试及进程管理 |
4.7典型应用实例解析 |
4.7.1典型汽车ADAS系统解析 |
4.7.1.1辅助车道保持系统、变道辅助系统与自动泊车系统 (同济大学陈慧教授, 何晓临、刘颂研究生提供初稿) |
4.7.1.2 ACC/AEB系统 (清华大学王建强研究员, 华南理工大学游峰副教授、初鑫男、谷广研究生, 中山大学张荣辉研究员提供初稿) |
4.7.2 V2X协同及队列自动驾驶 |
4.7.2.1一维队列控制 (清华大学李克强教授、李升波副教授提供初稿) |
4.7.2.2二维多车协同控制 (清华大学李力副教授提供初稿) |
4.7.3智能汽车的人机共驾技术 (武汉理工大学褚端峰副研究员、吴超仲教授、黄珍教授提供初稿) |
4.7.3.1国内外研究现状 |
4.7.3.2存在的问题 |
4.7.3.3热点研究方向 |
4.7.3.4研究发展趋势 |
5汽车碰撞安全技术 |
5.1整车碰撞 (长沙理工大学雷正保教授提供初稿) |
5.1.1汽车碰撞相容性 |
5.1.1.1国内外研究现状 |
5.1.1.2存在的问题 |
5.1.1.3重点研究方向 |
5.1.1.4展望 |
5.1.2汽车偏置碰撞安全性 |
5.1.2.1国内外研究现状 |
5.1.2.2存在的问题 |
5.1.2.3重点研究方向 |
5.1.2.4展望 |
5.1.3汽车碰撞试验测试技术 |
5.1.3.1国内外研究现状 |
5.1.3.2存在的问题 |
5.1.3.3重点研究方向 |
5.1.3.4展望 |
5.2乘员保护 (重庆理工大学胡远志教授提供初稿) |
5.2.1国内外研究现状 |
5.2.2重点研究方向 |
5.2.3展望 |
5.3行人保护 (同济大学王宏雁教授、余泳利研究生提供初稿) |
5.3.1概述 |
5.3.2国内外研究现状 |
5.3.2.1被动安全技术 |
5.3.2.2主动安全技术研究 |
5.3.3研究热点 |
5.3.3.1事故研究趋势 |
5.3.3.2技术发展趋势 |
5.3.4存在的问题 |
5.3.5小结 |
5.4儿童碰撞安全与保护 (湖南大学曹立波教授, 同济大学王宏雁教授、李舒畅研究生提供初稿;曹立波教授统稿) |
5.4.1国内外研究现状 |
5.4.1.1儿童碰撞安全现状 |
5.4.1.2儿童损伤生物力学研究现状 |
5.4.1.3车内儿童安全法规和试验方法 |
5.4.1.4车外儿童安全法规和试验方法 |
5.4.1.5儿童安全防护措施 |
5.4.1.6儿童约束系统使用管理与评价 |
5.4.2存在的问题 |
5.4.3重点研究方向 |
5.4.4发展对策和展望 |
5.5新能源汽车碰撞安全 (大连理工大学侯文彬教授、侯少强硕士生提供初稿) |
5.5.1国内外研究现状 |
5.5.1.1新能源汽车碰撞试验 |
5.5.1.2高压电安全控制研究 |
5.5.1.3新能源汽车车身结构布局研究 |
5.5.1.4电池包碰撞安全防护 |
5.5.1.5动力电池碰撞安全 |
5.5.2热点研究方向 |
5.5.3存在的问题 |
5.5.4发展对策与展望 |
6结语 |
(6)铝粉氮气雾化分级过程集成优化控制系统研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 铝粉氮气雾化分级控制技术 |
1.1.1 铝粉雾化技术的发展 |
1.1.2 铝粉分级技术的发展 |
1.1.3 铝粉雾化分级控制技术的发展和存在的问题 |
1.2 工业过程控制技术的发展及现状 |
1.2.1 控制理论的发展 |
1.2.2 智能控制的产生与发展 |
1.2.3 集成优化控制技术 |
1.2.4 控制系统技术发展 |
1.3 本文的选题背景和研究内容 |
1.3.1 选题背景 |
1.3.2 主要研究内容 |
2 铝粉氮气雾化分级过程控制系统设计 |
2.1 铝粉氮气雾化分级过程特点 |
2.1.1 铝粉氮气雾化分级工艺流程简介 |
2.1.2 主要控制问题 |
2.1.3 过程优化控制目标 |
2.2 集成优化控制系统设计 |
2.2.1 基本思想 |
2.2.2 设计原则 |
2.2.3 总体结构设计 |
2.3 小结 |
3 铝粉雾化炉铝液温度模糊-PID复合控制 |
3.1 模糊控制概况 |
3.1.1 模糊控制基础 |
3.1.2 模糊控制应用研究现状 |
3.1.3 模糊控制研究方向展望 |
3.2 雾化炉铝液温度模糊-PID复合控制 |
3.2.1 雾化炉铝液温度变化特点 |
3.2.2 模糊-PID复合控制器结构 |
3.2.3 模糊控制器设计 |
3.2.4 PID控制器参数整定 |
3.2.5 加权因子的确定 |
3.3 现场应用 |
3.4 小结 |
4 氮气雾化铝粉粒度分布软测量技术 |
4.1 氮气雾化铝粉粒度分布 |
4.1.1 氮气雾化铝粉粒度分布特点 |
4.1.2 铝粉粒度分布的测量方法 |
4.1.3 粒度测试技术的现状和发展趋势 |
4.2 神经网络软测量技术 |
4.2.1 软测量技术 |
4.2.2 神经网络软测量技术 |
4.3 铝粉粒度分布软测量模型 |
4.3.1 影响氮气雾化铝粉粒度分布的因素 |
4.3.2 数据采集和处理 |
4.3.3 RBF神经网络建模 |
4.3.4 RBF网络的逼近特性 |
4.3.5 软测量模型的训练与校验 |
4.3.6 软测量模型的在线校正 |
4.4 小结 |
5 铝粉氮气雾化过程优化控制算法 |
5.1 过程优化 |
5.1.1 基本概念 |
5.1.2 实现过程优化的关键技术 |
5.1.3 过程优化算法 |
5.2 遗传算法 |
5.2.1 遗传算法的基本原理 |
5.2.2 遗传算法的特点 |
5.2.3 遗传算法的基本操作 |
5.3 铝粉氮气雾化过程优化 |
5.3.1 铝粉氮气雾化生产过程模型 |
5.3.2 铝粉氮气雾化过程优化控制算法 |
5.3.3 优化控制算法实施和效果 |
5.4 小结 |
6 控制系统工业化实现与现场应用 |
6.1 工业化实现技术 |
6.2 控制系统结构 |
6.2.1 总体结构 |
6.2.2 现场总线网络 |
6.2.3 工业以太网网络 |
6.2.4 热备冗余配置 |
6.3 系统应用软件 |
6.3.1 监控级组态软件 |
6.3.2 优化级组态软件 |
6.3.3 PLC的软件设计 |
6.3.4 智能优化控制算法 |
6.4 工业运行情况 |
6.5 小结 |
结论 |
参考文献 |
附录A 成果证书 |
攻读博士学位期间发表学术论文情况 |
致谢 |
大连理工大学学位论文版权使用授权书 |
(7)基于数据驱动的涡扇发动机非线性控制器设计研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景和意义 |
1.2 涡扇发动机控制研究现状 |
1.3 智能控制研究发展及现状 |
1.4 主要研究内容 |
2 涡扇发动机模型基础 |
2.1 引言 |
2.2 涡扇发动机部件级模型 |
2.2.1 进气道 |
2.2.2 风扇 |
2.2.3 高压压气机 |
2.2.4 燃烧室 |
2.2.5 高压涡轮 |
2.2.6 低压涡轮 |
2.2.7 混合室 |
2.2.8 加力燃烧室 |
2.2.9 尾喷管 |
2.3 共同工作方程 |
2.4 涡扇发动机线性化模型 |
2.5 涡扇发动机LPV模型 |
2.6 本章小结 |
3 基于自适应增强的涡扇发动机控制器设计 |
3.1 引言 |
3.2 问题描述 |
3.3 控制系统结构设计 |
3.4 基于自适应增强的涡扇发动机控制器设计 |
3.5 仿真与分析 |
3.6 本章小结 |
4 基于滑动模态变结构的涡扇发动机多变量控制器设计 |
4.1 引言 |
4.2 涡扇发动机多变量控制 |
4.2.1 涡扇发动机多变量控制原理 |
4.2.2 控制参数选取 |
4.2.3 控制器性能指标 |
4.2.4 仿真工作点选择 |
4.3 基于滑动模态变结构的涡扇发动机控制器设计 |
4.3.1 滑模控制原理 |
4.3.2 鲸鱼优化算法 |
4.3.3 滑模控制器设计方法及趋近律分析 |
4.4 验证与分析 |
4.4.1 仿真验证 |
4.4.2 试验验证 |
4.5 本章小结 |
5 基于神经网络的涡扇发动机多变量控制器设计 |
5.1 引言 |
5.2 基于RBF神经网络滑模的涡扇发动机控制器设计 |
5.2.1 RBF神经网络 |
5.2.2 基于RBF神经网络滑模的涡扇发动机控制器设计 |
5.2.3 稳定性分析 |
5.2.4 仿真验证与分析 |
5.3 基于因果卷积神经网络的涡扇发动机控制器设计 |
5.3.1 因果卷积神经网络 |
5.3.2 基于因果卷积神经网络的涡扇发动机控制器设计 |
5.3.3 稳定性分析 |
5.3.4 仿真验证与分析 |
5.4 本章小结 |
结论 |
参考文献 |
攻读硕士学位期间发表学术论文情况 |
致谢 |
(8)智能汽车紧急避撞轨迹规划与路径跟踪控制策略研究(论文提纲范文)
致谢 |
摘要 |
ABSTRACT |
常用符号表 |
1 绪论 |
1.1 研究背景及意义 |
1.2 智能汽车发展现状 |
1.3 智能汽车轨迹规划技术的研究现状 |
1.3.1 行驶轨迹规划算法研究现状 |
1.3.2 紧急避撞轨迹规划策略研究现状 |
1.4 智能汽车路径跟踪控制技术的研究现状 |
1.4.1 路径跟踪控制系统研究现状 |
1.4.2 路径跟踪控制策略研究现状 |
1.5 论文主要研究内容及结构 |
2 智能汽车紧急避撞轨迹规划策略研究 |
2.1 智能汽车紧急避撞交通场景分析 |
2.1.1 紧急避撞交通场景定义 |
2.1.2 对向车辆行驶轨迹预测 |
2.1.3 紧急避撞轨迹规划的触发条件 |
2.2 智能汽车的紧急避撞轨迹规划算法研究 |
2.2.1 紧急避撞轨迹规划的问题分析 |
2.2.2 基于模型预测的避撞轨迹路径规划 |
2.2.3 基于多项式拟合的避撞轨迹速度规划 |
2.2.4 避撞轨迹目标状态的确定 |
2.3 智能汽车紧急避撞轨迹的确定 |
2.3.1 候选轨迹的碰撞检测 |
2.3.2 车辆碰撞严重度预测 |
2.3.3 考虑碰撞缓解的避撞轨迹确定 |
2.4 本章小结 |
3 智能汽车路径跟踪控制系统建模 |
3.1 智能汽车路径跟踪控制系统的结构分析及建模假设 |
3.1.1 路径跟踪控制系统的结构分析 |
3.1.2 路径跟踪控制系统的建模假设 |
3.2 智能汽车的侧向动力学建模 |
3.2.1 二自由度车辆模型建立 |
3.2.2 轮胎侧向力计算模型 |
3.3 智能汽车的路径跟踪误差模型 |
3.4 路径跟踪控制系统的状态空间模型 |
3.5 本章小结 |
4 紧急避撞工况下智能汽车路径跟踪控制策略研究 |
4.1 智能汽车路径跟踪控制算法建立 |
4.1.1 MPC控制算法的预测模型 |
4.1.2 MPC路径跟踪控制算法建立 |
4.2 紧急避撞工况下路径跟踪误差模型的优化研究 |
4.2.1 基于航向角偏差的跟踪误差模型优化 |
4.2.3 基于车辆转向工况识别的复合跟踪误差模型 |
4.3 基于复合跟踪误差模型的路径跟踪控制策略研究 |
4.3.1 智能汽车稳定性约束研究 |
4.3.2 智能汽车路径跟踪控制策略建立 |
4.4 本章小结 |
5 智能汽车路径跟踪鲁棒优化控制策略研究 |
5.1 智能汽车路径跟踪控制的鲁棒优化分析 |
5.1.1 路径跟踪控制系统的不确定性分析 |
5.1.2 Tube-RMPC算法分析 |
5.2 基于车辆时变参数特性的Tube不变集优化设计 |
5.2.1 Tube不变集计算方法分析 |
5.2.2 车辆时变参数特性分析 |
5.2.3 Tube不变集优化设计 |
5.3 Tube-RMPC路径跟踪鲁棒优化控制策略研究 |
5.3.1 Tube-RMPC算法的反馈增益 |
5.3.2 路径跟踪控制系统的稳定性约束条件 |
5.3.3 Tube-RMPC系统控制输入求解 |
5.4 本章小结 |
6 智能汽车避撞轨迹规划与路径跟踪控制的仿真试验研究 |
6.1 智能汽车轨迹规划与路径跟踪控制的仿真平台简介 |
6.1.1 基于Car Sim与 Simulink的联合仿真平台简介 |
6.1.2 智能汽车仿真分析技术参数与行驶环境设置 |
6.2 智能汽车路径跟踪控制策略的对比分析 |
6.2.1 基于复合跟踪误差模型的路径跟踪控制策略的对比分析 |
6.2.2 路径跟踪鲁棒优化控制策略的对比分析 |
6.3 智能汽车紧急避撞轨迹规划策略的验证分析 |
6.3.1 仿真试验设置 |
6.3.2 仿真试验及结果分析 |
6.4 本章小结 |
7 全文总结 |
7.1 主要工作及结论 |
7.2 创新点 |
7.3 展望 |
参考文献 |
作者简历及攻读博士学位期间取得的研究成果 |
学位论文数据集 |
(9)递阶控制在挤压制造工艺中的应用研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 课题的研究背景及意义 |
1.2 国内外研究动态分析及发展趋势 |
1.2.1 挤压制造工艺中运动系统轮廓控制方法的研究动态及发展趋势 |
1.2.2 挤压制造工艺中力位控制研究动态及发展趋势 |
1.2.3 挤压制造工艺中递阶控制的研究动态及发展趋势 |
1.3 目前研究所存在的问题 |
1.4 论文的研究内容 |
2 挤压制造与递阶控制的原理 |
2.1 挤压制造工艺中的常见问题 |
2.1.1 轮廓控制的问题 |
2.1.2 力-位控制的问题 |
2.2 递阶控制系统的基本原理 |
2.3 递阶控制系统实施方案 |
2.3.1 实施前需考虑的问题 |
2.3.2 本文的研究框架 |
2.4 本章小结 |
3 递阶控制在挤压制造轮廓控制的应用 |
3.1 基于递阶控制模型的分层轮廓控制方法 |
3.1.1 数控机床的建模 |
3.1.2 上层目标与最优跟踪控制的分析 |
3.2 实验结果 |
3.3 实验结果分析 |
3.4 本章小结 |
4 递阶控制在挤压制造力-位置控制中的应用 |
4.1 力位控制的递阶控制模型 |
4.1.1 数控机床的力轨迹 |
4.1.2 聚合关系的建模 |
4.2 最佳控制信号的计算 |
4.2.1 顶级跟踪误差的计算 |
4.2.2 顶级目标与控制信号的计算 |
4.3 递阶控制器的应用 |
4.4 实验结果及分析 |
4.5 本章小结 |
5 递阶控制在挤压制造中的应用实例 |
5.1 实验材料的选择 |
5.2 实验装置的搭建 |
5.3 递阶控制器的设计 |
5.3.1 处理层 |
5.3.2 监控层 |
5.4 模型设计和工艺参数的确定 |
5.5 实验过程及分析 |
5.6 递阶控制和分散控制的实验结果比较 |
5.7 本章小结 |
6 结论与展望 |
6.1 结论 |
6.2 展望 |
致谢 |
参考文献 |
附录 |
(10)基于CPS的人机协同纵向跟车建模与控制研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景 |
1.2 研究现状 |
1.2.1 纵向跟车建模研究 |
1.2.2 人机协同控制研究 |
1.2.3 信息物理系统研究 |
1.3 现有研究存在的问题 |
1.4 课题的提出及研究意义 |
1.4.1 课题的提出 |
1.4.2 课题的研究意义 |
1.5 本文的主要研究内容 |
1.6 本章小结 |
2 考虑距离感知不敏感性的驾驶员纵向跟车建模研究 |
2.1 引言 |
2.2 模型建立 |
2.2.1 智能驾驶员模型简介 |
2.2.2 驾驶员跟车模型建立 |
2.3 模型的稳定性分析 |
2.4 仿真实验 |
2.4.1 数值仿真实验 |
2.4.2 基于驾驶模拟器的跟车实验 |
2.5 本章小结 |
3 基于前车运动预测的自动驾驶纵向跟车建模研究 |
3.1 引言 |
3.2 模型建立 |
3.2.1 前车运动自回归预测 |
3.2.2 自动驾驶跟车模型建立 |
3.3 模型稳定性分析 |
3.3.1 开放边界条件的局部稳定性分析 |
3.3.2 周期边界条件的线性稳定性分析 |
3.3.3 周期边界条件的非线性稳定性分析 |
3.4 实验及数值仿真 |
3.4.1 基于NGSIM数据的前车运动自回归预测验证 |
3.4.2 基于NGSIM数据的纵向跟车模型验证 |
3.4.3 预测误差的影响仿真 |
3.5 本章小结 |
4 基于模型预测控制的人机协同切换驾驶控制研究 |
4.1 引言 |
4.2 人机切换驾驶模型建立 |
4.2.1 驾驶员跟车模型 |
4.2.2 自动驾驶跟车模型 |
4.2.3 人机切换驾驶模型 |
4.3 切换系统稳定性分析 |
4.4 人机协同切换控制策略设计 |
4.4.1 基于模型预测控制的优化切换策略 |
4.4.2 目标和约束 |
4.4.3 优化问题构建 |
4.5 仿真实验 |
4.6 本章小结 |
5 保持人在回路的纵向跟车人机混合智能协同控制研究 |
5.1 引言 |
5.2 纵向跟车人机混合智能协同控制策略设计 |
5.2.1 基本纵向跟车模型 |
5.2.2 人机混合智能协同控制策略设计 |
5.3 车速跟随控制器设计 |
5.3.1 前馈反馈控制 |
5.3.2 基于仿人智能控制的控制器精细化调整 |
5.4 驾驶员间距调节策略及稳定性分析 |
5.5 仿真实验 |
5.5.1 数值仿真实验 |
5.5.2 基于驾驶模拟器的仿真实验 |
5.6 本章小结 |
6 基于人机双闭环分层协同的纵向跟车建模与控制研究 |
6.1 引言 |
6.2 纵向跟车建模及人机双闭环协同控制策略设计 |
6.2.1 考虑模型不确定性的车辆纵向动力学建模 |
6.2.2 纵向跟车人机双闭环协同策略设计 |
6.3 内环驾驶自动化系统车速跟随控制器设计 |
6.4 外环驾驶员车间距调节策略及稳定性分析 |
6.5 仿真实验 |
6.5.1 数值仿真实验 |
6.5.2 基于驾驶模拟器的仿真实验 |
6.6 本章小结 |
7 结论与展望 |
7.1 本文工作总结 |
7.2 主要创新成果 |
7.3 研究展望 |
参考文献 |
附录 |
A作者在攻读博士学位期间完成的论文 |
B作者在攻读博士学位期间参与的科研项目 |
C作者在攻读博士学位期间参加的学术活动 |
D学位论文数据集 |
致谢 |
四、STEADY-STATE HIERARCHICAL INTELLIGENT CONTROL OF LARGE-SCALE INDUSTRIAL PROCESSES(论文参考文献)
- [1]S黄金冶炼公司的数字化生产管理系统升级改造[D]. 刘树豪. 山东科技大学, 2020(04)
- [2]教育部关于印发普通高中课程方案和语文等学科课程标准(2017年版2020年修订)的通知[J]. 教育部. 中华人民共和国教育部公报, 2020(06)
- [3]3D打印技术专业“三教”改革探索[J]. 刘森,张书维,侯玉洁. 数码世界, 2020(04)
- [4]中国筑路机械学术研究综述·2018[J]. 马建,孙守增,芮海田,王磊,马勇,张伟伟,张维,刘辉,陈红燕,刘佼,董强柱. 中国公路学报, 2018(06)
- [5]中国汽车工程学术研究综述·2017[J]. 《中国公路学报》编辑部. 中国公路学报, 2017(06)
- [6]铝粉氮气雾化分级过程集成优化控制系统研究[D]. 张永辉. 大连理工大学, 2006(12)
- [7]基于数据驱动的涡扇发动机非线性控制器设计研究[D]. 韩英举. 大连理工大学, 2021(01)
- [8]智能汽车紧急避撞轨迹规划与路径跟踪控制策略研究[D]. 孙传扬. 北京交通大学, 2021(02)
- [9]递阶控制在挤压制造工艺中的应用研究[D]. 乔菁菁. 西安科技大学, 2020(01)
- [10]基于CPS的人机协同纵向跟车建模与控制研究[D]. 李洋. 重庆大学, 2020