一、对粉/旋喷搅拌桩加固软弱地基的检测与评价(论文文献综述)
商治[1](2021)在《高压旋喷桩加固岩溶空洞软弱地基的作用机理及应用关键技术研究》文中研究指明近年来,随着我国经济的快速发展以及城市化水平的不断提高,在岩溶空洞软弱地基上修筑的高层建筑越来越多。如何采取合理的措施来加固岩溶空洞软弱地基具有重要的现实意义和理论价值。广州白云区某工程项目为典型的岩溶空洞软弱地基,该场地岩溶不良地质作用强烈发育,场地稳定性和适宜性较差。在遵循施工方便、安全可靠和经济合理的原则下,选用高压旋喷桩对场地岩溶空洞软弱地基进行加固处理。本文以该项目为依托工程,通过地质勘查资料、现场检测、高压旋喷桩加固技术资料的收集与分析,并引入理论计算、室内配合比试验、微观结构分析、土工试验以及稳定行分析等手段,建立了高压旋喷桩加固岩溶空洞软弱地基的研究应用框架。主要进行的工作以及取得的研究成果如下:(1)在现场实地踏勘的基础上,考虑岩溶空洞软弱地基稳定性评价的复杂性,综合采用定性分析方法、半定量分析方法和模糊综合评价方法对依托工程39#地块岩溶空洞软弱地基的稳定性进行了分析与评价。分析结果表明,依托工程39#地块场地的岩溶空洞软弱地基在自然状态下稳定性较好,发生坍塌的可能性小,但当挖填方施工结束后或者在整体施工结束后的运营阶段,土洞和溶洞易使地面产生塌陷,对工程安全具有不利影响。(2)在土工试验结果以及高压旋喷桩设计技术参数的基础上,进行了三个不同配比,两种养护条件下高压旋喷固结体的无侧限抗压强度试验并对原状土样和高压旋喷固结体进行了微观结构分析。结果表明,综合考虑设计要求及场地地下水的影响,加固时水泥浆液可采用每延米35%胶凝材料用量配比设计。外部胶凝材料的加入使原状土结构的表面增加了很多细微的颗粒,这些细微的颗粒起着连结和胶结原状土体的作用,且这种连结和胶结作用随着胶凝材料用量的增多而越发明显。(3)对旋喷桩加固岩溶空洞软弱地基的施工前准备工作、工艺流程以及施工工艺参数等关键技术进行了详细的阐述,并采用多种手段对高压旋喷桩加固岩溶空洞软弱地基的效果进行了检验。检验结果表明,塔楼范围内土洞和溶洞经高压旋喷桩处理后均得以填充,土洞和溶洞填充物的密实度较高,无钻孔泥浆漏失问题的存在。高压旋喷桩处理过的地基关键区域取芯率明显提高,土洞及溶洞发育区域的取芯率均高于90%,证明经过高压旋喷桩加固处理后,地基的完整性、稳定性以及连续性均得以显着提高。
Editorial Department of China Journal of Highway and Transport;[2](2021)在《中国路基工程学术研究综述·2021》文中提出作为路面的基础,稳定、坚实、耐久的路基是确保路面质量的关键,而中国一直存在着"重路面、轻路基"的现象,使得路基病害导致的路面问题屡禁不止。近年来,已有越来越多的学者注意到了路面病害与路基质量的关联性,从而促进了路基工程相关的新理论、新方法、新技术等不断涌现。该综述以近几年路基工程相关的国家科技奖的技术创新内容、科技部及国家自然科学基金项目、优秀中文权威期刊的论文、Web of Science中的高水平论文的关键词为依据,系统分析了国内外路基工程五大领域的研究现状及未来的发展方向。具体涵盖了:地基处理新技术、路堤填料工程特性、多场耦合作用下路堤结构性能演变规律、路堑边坡的稳定性、路基支挡与防护等。可为路基工程领域的研究人员与技术人员提供参考和借鉴。
钱星辰[3](2020)在《整体碳化加固法处理浅层软弱地基试验研究》文中进行了进一步梳理依托江苏省交通厅科研基金“整体碳化技术加固高速公路浅层软弱地基应用研究”(2018T01),应用氧化镁整体碳化加固技术,选择常宜和宜长高速公路部分浅层软弱土地基,采用现场试验、长期监测和理论分析相结合的方法进行了研究。通过施工设备研发,结合现场试验、加固效果检测和路基荷载下的监测,形成了施工、监测和质量评价技术。主要内容及成果如下:(1)针对氧化镁整体碳化浅层软弱地基的施工工艺,研发了整体碳化的机械设备和整体碳化系统。该系统通过履带式挖掘机装配搅拌装置、固化剂供给装置、通气碳化装置,有效地对浅层软弱土体进行注料和搅拌,并在通气碳化数小时内完成对软弱地基加固。(2)通过氧化镁整体碳化浅层软弱地基的施工工艺研究,确定了从施工材料准备、软弱土体搅拌、通气系统布置、通气碳化等施工工艺,提出了成套氧化镁整体碳化加固浅层软弱地基的施工方法和施工流程。(3)通过原位测试,研究了整体碳化法加固浅层软弱土的处治效果,结果表明:土体能在短时间的碳化后获得动回弹模量和地基承载力的提升。部分碳化区域动回弹模量达到了20MPa以上,现场各测点的地基承载力都超过了100k Pa,满足了工程建设对地基承载力的要求。(4)采用原位监测技术,对氧化镁整体碳化处理后路基荷载作用下的沉降和土体应力进行了研究,路基荷载下累计沉降量在70mm以内,土体固结效果良好;碳化路基上各测点的土压力也在120天左右的时间回归到132k Pa左右。(5)结合施工工艺,分析不同碳化时间和通气管距下的碳化效果、碳化后的地基承载力、动回弹模量和长期沉降量等规律,提出了氧化镁整体碳化浅层软弱地基技术的质量控制方法。(6)对比传统的浅层软弱土地基处治方法,整体碳化固化法属于环境、资源友好型地基处理方法,处理单位立方淤泥质土的成本比传统的换填法可降低约17%,经济效益显着。
贾超[4](2020)在《水泥土搅拌桩对湿陷性黄土地基的加固效果研究》文中进行了进一步梳理水泥土搅拌桩复合地基由于适应性广、造价较低和加固效果良好等特点,目前已广泛应用于软土地基加固处理中。搅拌桩复合地基承载力是评价其加固性能的最重要的指标之一。在工程实际中,通常根据现场勘察结果选择相应的施工工法,并通过试桩以及试桩过程中对桩体和复合地基承载力的检测监测,来确定工程施工参数,分析复合地基的加固效果。本文首先分析了水泥土搅拌桩复合地基的国内外发展趋势及工程应用,归纳总结了复合地基的概念、主要类型及效用,分析了桩式复合地基的加固机理以及水泥土搅拌桩复合地基承载力及沉降特性的计算理论和方法。在此基础上,以太焦铁路太谷段黄土地基为研究背景,根据现场勘察和试验结果,分析评价了该路段黄土的特性及其湿陷性。最后,采用现场监测、数值分析及理论计算等手段,计算分析了该路段水泥土搅拌桩复合地基的承载力及沉降特性,得到以下主要研究结论:(1)通过桩身外观尺寸检查和钻孔取芯,发现芯样完整性良好,桩体均匀;各芯样无侧限抗压试验结果均大于1MPa,表明水泥土搅拌桩桩身完整性和桩体强度均能满足设计要求。(2)随着荷载的逐渐增加,复合地基荷载-沉降曲线缓慢向下发展,比例界限和极限荷载不明显;在竖向荷载作用下,地基的压密、局部剪切破坏和完全破坏特征也不明显,表明复合地基承载力未达到其极限状态。(3)通过静载荷试验、理论计算以及数值模拟所得水泥土搅拌桩单桩复合地基承载力特征值分别为190kPa、315kPa和238kPa。由此可知,复合地基承载力特征值理论计算结果大于现场测试结果,主要是因为试验荷载未达到复合地基的极限状态,未充分发挥其承载能力;数值模拟结果略小于现场静载荷试验结果,但其差值较小。(4)现场监测、数值模拟及理论计算所得地基沉降量分别为21.17mm、26.14mm及31.25mm。数值模拟结果大于现场监测,主要原因是地基土的密度及弹性模量通常会随着时间增长而增大,但本文模型中则取密度及弹性模量为固定值。
谢卫红[5](2019)在《乐海围垦区道路网软土地基处理方法研究》文中进行了进一步梳理随着我国经济水平的快速发展,道路建设进入高峰期,保障道路建成后的安全高效运营是重中之重。但沿海地区软土地基分布区域十分广泛,软土因为其压缩性高、变形量大且持续时间长,抗剪强度低等缺点,可能会引起路面开裂、桥头跳车、路堤严重变形甚至失稳等工程灾害,是道路的安全和稳定的重大隐患。因此,为了解决沿海地区软土地基带来的沉降或者差异沉降等问题,必须对软土地基进行处理。本文主要介绍了软土的定义及其工程特点,常见的软土地基处理方法等。以浙江省温州市乐海围垦道路网工程为工程实例,首先对该工程的地质特征和水文特征等进行调查研究,结合项目存在特殊的周边环境和复杂的软土地质条件,从施工成本、工程进度等方面进行了对比,选择了低能量强夯法作为该工程的地基处理方法。低能量强夯法在处理地基过程中可适当的降低夯击能量,有效的提高地基承载力性能,处理的成本低,同时操作也很简单,减小对周边环境的影响。低能量强夯法在地基处理过程中被经常采用,该工法是近年来经10多年开发研究、渐趋成熟的加固软土新技术。该工法和强夯处理法之间有着显着的差异,根据强夯法的基本原理,在处理过程中,首先要将土体的结构进行破坏,然后再重新施加力,达到重新固结的目的;但是强夯法在软粘土的处理过程中,由于软粘土本身的性质不同,所以导致在强度恢复过程中非常缓慢,因此这种方法只能适用于粘性土在一定含水量范围内的情况。而采用低能量强夯法,可以在确保土体的结构不发生变化的情况下,或不发生显着的破坏情况下,采用合适的工艺方法对土体进行夯实。通过对低能强夯法加固机理及关键指标分析,为数值模拟的建立提供了理论依据,通过有限元数值模型的基本假定和基本理论,使用Midas GTS NX建立了数值计算模型,通过对不同夯击能加固深度的计算,得出了1500kN·m为项目最佳的夯击能选择,所以选择落距为7.5m。通过对现场进行了低能强夯法试验段,来验证此方法的可行性,通过现场监控数据和监测数据的分析,采用低能量强夯法对地基的处理效果能够满足规范和工程需要,且其经济性较好,是所有地基处理方法中最适合本工程的地基处理方法。根据低能量强夯法的特点,制定了地基处理加固的方案,拟定了地基处理过程中的注意事项,低能量强夯法的验收标准等。最后,利用监测工作从而对软土地基的操作结果展开了研究,根据结果我们观察到,此次项目中围绕软土地所运用的低能量强夯法可以实现加固的效果。在进行针对性处理后,后续形成的软土地可以符合设计标准,为同类型软土地区的地基处理提供借鉴和参考。
郭尤林[6](2019)在《串联式组合桩复合地基承载机理及其设计计算方法研究》文中研究表明串联式组合桩复合地基是一种新型的桩体复合地基型式,由“固体”与“散体”构成的上下同轴串联桩体,其中“固体”为2种不同刚度的粘结性材料构成,分别为素混凝土与浆固碎石,“散体”为碎石散体材料。在上部荷载的作用下,该新型复合地基型式克服了散体材料桩强度低且在土层性质较差时,桩体侧向鼓胀变形较大甚至破坏土体结构的缺陷。此外,三种不同刚度组成的上下同轴串联式组合桩体可有效的将荷载传递至更深广的土体中,提高了复合地基的承载能力,减小了地基沉降变形。当前,随着组合型复合地基概念的进一步拓宽,衍生出多种组合型桩体复合地基模型,均不同程度地提高了散体材料的承载能力,且在工程实践中得到成功应用,然而,对实散体组合桩复合地基的研究成果较少,特别是实散体组合桩复合地基的承载机理、荷载传递机制及受力变形计算理论研究还处探索阶段,有待进一步深入研究。为此,本文结合国家自然科学基金项目(51478178)“交通移动荷载下刚性桩复合地基承载机理及其受力变形分析方法研究”,基于理论分析、数值模拟与现场试验,对柔性基础下串联式组合桩复合地基的承载机理及其设计计算方法进行系统深入的研究。本文首先系统阐述了串联式组合桩复合地基组成材料的物理特性与力学特性,并对软土地基土进行了工程应用评价;基于散体材料桩复合地基破坏失稳的特征,在桩体组成材料受力变形特性的研究基础上,提出了串联式组合桩复合地基,并介绍了串联式组合桩的结构组成与结构特点,进而开展串联式组合桩复合地基施工工艺研究。其次,分析了桩体复合地基的桩体荷载传递机理与桩土体系荷载传递机理,并基于自主研发的分级加载系统与压力测试方法,揭示了不同桩段长度比条件下串联式组合桩的荷载机理,建立了串联式组合桩的力学计算模型与微分控制方程,阐明了其受力变形不仅与桩体构成材料及规格相关,而且与其赋存的工程地质条件相关,主要影响因素是褥垫层参数、桩段参数、桩径、桩间距以及土模量参数等。在分析复合地基受力变形特征的基础上,对不同刚度桩体复合地基的承载力与沉降变形计算方法进行了适宜性评价,提出了不同刚度桩体复合地基承载力与沉降变形的计算方法。基于滑块破坏理论,采用计算深基础承载力Meyerhof法,建立了2种串联式组合桩极限承载力计算模型,并通过随机优化算法确定临界滑动面,提出了串联式组合桩复合地基极限承载力计算方法。基于串联式组合桩复合地基力学变形机理,将串联式组合桩复合地基加固区的沉降变形分为三个区段,并分别提出了各区段桩体与土体沉降变形计算模型,进而基于圆孔扩张理论论建立了考虑桩土滑移与桩体鼓胀变形的串联式组合桩复合地基沉降变形计算方法,并提出了复合地基沉降变形计算方法中6个参数的确定方法。同时,为考虑桩体鼓胀变形引起的桩周侧向约束力对复合地基沉降的影响,基于改进的应变楔理论,提出了串联式组合桩复合地基沉降变形计算方法,确定了复合地基沉降变形计算中3个参数的取值方法与原则。并依托工程实例,对2种串联式组合桩复合地基沉降变形计算方法进行对比分析,阐述了考虑滑移和鼓胀变形的复合地基沉降变形计算结果偏大,但计算参数获取直接且设计偏于保守,而基于改进应变楔模型的复合地基沉降计算更能反映工程实际,但存在获取计算参数的不确定性。再次,基于串联式组合桩各桩段构成材料的物理特性,结合离散-连续耦合理论,视串联式组合桩中碎石桩段为离散元实体结构,在离散元实体结构周围区域采用连续实体结构,即视浆固碎石桩段与混凝土桩段为连续元实体结构,建立离散-连续(FLAC-PFC)耦合数值计算模型,分析了褥垫层参数、混凝土桩段参数、浆固碎石桩段参数、碎石桩段参数、桩身直径、桩间距以及土体模量对串联式组合桩复合地基承载特性的影响,为串联式组合桩复合地基的设计奠定理论基础。最后,依托新建赣州至深圳客运专线某车站软土路基工程,基于高速铁路软土路基技术标准,提出了按工后沉降变形控制的串联式组合桩复合地基设计原则,给出了确定串联式组合桩的桩长、桩径、桩间距以及布桩形式的方法,进而结合本文串联式组合桩复合地基承载力及沉降变形计算理论,对比分析了同设计参数的CFG桩复合地基加固效果,验证了承载力及沉降变形计算理论的可靠性与合理性,实现了采用串联式组合桩加固软土地基的设计理念。串联式组合桩复合地基拓展了复合地基工程实践领域,丰富了组合型复合地基的设计计算理论,为串联式组合桩复合地基的推广与应用提供了理论基础。
孙哲[7](2019)在《旋喷搅拌桩在高速铁路软基处理中的应用研究》文中进行了进一步梳理旋喷搅拌桩是通过对施工机械设备进行创新改进,将水泥土搅拌桩的搅拌工艺和旋喷桩的高压频射技术有机结合后形成的一种新型桩型。本文依托徐州至盐城铁路(以下简称徐盐铁路)旋喷搅拌桩加固软基试验段工程,采用现场试验、理论分析和数值模拟等方法对旋喷搅拌桩加筋路堤处理高速铁路软土路基施工技术、加固效果进行分析,并提出适用于旋喷搅拌桩复合地基的设计计算方法。本文的主要研究内容和取得的研究成果如下:(1)根据现场实际施工情况,总结了旋喷搅拌桩的施工工艺、施工技术参数、质量检测方法,为类似工程地质条件下的旋喷搅拌桩的施工实践提供借鉴。对比分析了旋喷搅拌桩、普通水泥土搅拌桩和高压旋喷桩的经济效益,研究发现旋喷搅拌桩可在相近加固效果条件下降低约9%的工程造价。(2)依托徐盐铁路XYZQ-Ⅱ标段双沟车站正线地基加固工程,开展了旋喷搅拌桩加固软土地基现场试验研究,分析了路堤荷载下旋喷搅拌桩加固软基的变形和桩土荷载分担规律。现场实测结果表明,随着路堤填土填筑高度的增加,桩顶处土压力总是大于桩间土处土应力,且两者差值呈现出先增加后趋于稳定的趋势;路堤中心处土压力总是大于路肩处的土压力。当路基本体及基床底层填筑工作完成时,填筑高度为6.6m,桩土应力比为4.110.6,荷载分担比为40.2%59.4%。(3)采用ABAQUS数值分析软件,根据徐盐铁路旋喷搅拌桩软基加固工程现场工况建立数值分析模型,通过调整桩体模量参数(由20MPa增至81920MPa),对13组不同强度的旋喷搅拌桩桩承路堤的地基沉降、桩土差异沉降、水平位移、桩土应力比和不同深度处的超静孔压进行对比分析。分析结果表明,对于本文工况,可取160MPa作为柔性桩和刚性桩的判定界限,为旋喷搅拌桩加筋路堤分类设计提供了依据。(4)基于承载力控制原则,给出了旋喷搅拌桩复合地基的设计流程和设计计算方法,并采用了徐盐铁路实际工程案例对其合理性进行了验证。
刘鹏程[8](2019)在《多向加芯搅拌桩在丰南钢厂软基处理工程中的应用研究》文中提出多向加芯搅拌桩是一种新兴的软土地基处理技术,当前应用不多,实际经验稍显不足,需要结合工程实践,对其关键技术展开深入研究。本文以河北省唐山市丰南钢厂项目软土地基处理工程为例,在介绍软土地基处理方案比选、多向加芯搅拌桩工程设计与施工工艺的基础上,通过物理检测,评价了其工程质量,利用ANSYS有限元进行数值模拟,评价了其关键技术参数选取的合理性,并提出了可能进一步优化的技术方案。丰南钢厂项目区分布有典型的软土地基,具有高含水量、孔隙比大、压缩性高、灵敏度高、物理力学性质差等特点。多向加芯搅拌桩通过刚性内芯桩承担荷载,柔性外桩提供侧摩阻力,承载力高于柔性桩,成本低于刚性桩,在较小沉降时能提供足够高的承载力,又能充分发挥预应力管桩的强度。丰南钢厂项目选择多向加芯搅拌桩作为软土地基的加固方案,在技术和经济等方面均具有明显的合理性和优越性。通过对多向加芯搅拌桩在竖向荷载下的工作性状进行数值模拟发现:在正常荷载情况下,桩侧侧摩阻力分担总荷载的90%以上:增加内外芯长度比,可以有效减小多向加芯撹拌桩的桩顶沉降量,最优内外芯长度比应为0.75;多向加芯搅拌桩的桩顶沉降量可通过增加芯桩面积比来减少,多向加芯搅拌桩的最优截面含芯率应为0.25:水泥掺入量宜为22%左右,为提高水泥土强度,可适当增大下部桩身掺灰量。群桩破坏模式由群桩的极限承载力决定分为群桩侧阻破坏和群桩端阻破坏;影响多向加芯搅拌桩群桩效应的主要因素是承台和桩距。承台会限制群桩基础上部土的相对位移,影响桩身荷载的传递规律,从而使桩身上部的侧摩阻力值发挥不完善,桩侧摩阻力的最大值不同于单桩出现在桩身上部,而是出现在桩体的中下部。群桩基础中,在不考虑桩长因素影响的前提下,随着桩数的增加、桩距的减小,其桩侧摩阻力值发挥越小。当内外芯桩长比0.75,含芯率0.25,桩间距3m时,承载效果最佳,经济效益最好。
王亮[9](2019)在《基于透气管桩的碳化复合桩试验与工艺研究》文中研究指明使用水泥作为土体固化材料会产生大量碳排放,活性MgO是有效的水泥替代品,经碳化后可以取得良好的固化效果,且实现了二氧化碳循环利用,具有很高的环境效益。现有MgO搅拌土碳化多局限于处理浅层地基,本文基于东南大学岩土所关于MgO碳化的已有研究成果,首次提出通过透气管桩通气碳化MgO搅拌土的碳化复合桩技术。进行了室内单元体试验、模型试验和现场单点试验,验证了该方法的可行性。论文的主要研究内容和成果如下:(1)采用三轴柔性壁室内渗透试验对活性MgO碳化固化粉土和粉质黏土的渗透特性进行了系统研究,发现固化后土体渗透系数处于10-510-6 cm/s数量级。活性MgO碳化土的渗透系数随MgO掺量的增加而降低,与相同掺量下水泥固化土的渗透系数处于同一数量级;MgO碳化粉土的渗透系数明显大于碳化粉质黏土的渗透系数;当MgO固化粉土和粉质黏土碳化6.0 h时,相应的渗透系数达到最小(10-6 cm/s);通气压力对MgO碳化固化土的渗透系数影响不大。(2)通过室内单元体试验,证明了透气管桩碳化法可以取得与三轴密闭碳化基本接近的碳化效果。透气管桩的有效影响范围内,不同距离的搅拌土所能获得的碳化效果基本一致。碳化时间较短或碳化通气压力较小时,近距离处碳化效果更好。碳化过程对透气管桩强度增长有益,碳化6.0 h后可达初始强度的1.6倍。(3)通过室内模型试验,对透气管桩碳化法在粉土和淤泥质土中的应用效果进行了研究。通过温度、物理力学特性等指标对碳化效果进行了评价。试验结果表明通气碳化前需要预留足够的MgO水化时间;透气管桩碳化法的碳化效果沿深度基本均匀;受土颗粒、水分等阻碍,且由于气体运动方向的不定性,透气管桩碳化法存在有效碳化距离和最大碳化距离。本试验中200 kPa通气压力下有效碳化距离至少可达40 cm。(4)基于室内试验和现场单点试验,总结得出透气管桩碳化法的不同反应阶段特征,初步提出了透气管桩碳化法的现场施工工艺。
骆干[10](2019)在《软土填石地基插芯组合桩承载特性及应用研究》文中提出我国的珠江三角洲地区存在大量的软土层,土层多是深度达20-60米的淤泥或淤泥质土,多层分布且厚度不均,类型多、成因复杂。由于这些软土地区经济发达,市场活跃,为了满足需求,大量的基建项目不断在建设。软土地基因其含水量较高、孔隙比大、可压缩性大等特性,造成其承载能力低、工程性质差、固结时间长等不利于工程项目的开展。针对既有建筑物下深厚软土地基存在的一些工程问题,如沉降过大、承载力不足等问题,应因地制宜提出加固深厚淤泥地基的处理方法。插芯桩是由强度较高的芯桩和水泥土桩体两部分构成的,复合桩侧摩阻力和桩端摩阻力的提高靠水泥土桩体侧面和底面较大的面积来实现,较高强度的桩芯来弥补水泥桩体的强度的不足。具有成本低、污染小、无挤土效应,对既有建筑及地下管线的影响小,机具施工灵活便捷等特点。本文依托某能源发展化工厂区深厚软土填石地基加固项目,基于既有建筑下深厚软土填石地基沉降过大引起的上部结构建筑物的的灾害问题,本文采用理论分析、数值模拟、静载试验及现场监测相结合的手段,对竖向荷载下高压旋喷微型钢管素砼桩的桩基础承载特性及变形机理进行研究。主要研究内容如下:(1)在竖向荷载作用下,进行了高压旋喷微型钢管素砼桩不同插芯深度的现场静载试验。对比研究了竖向荷载下等截面桩、不同插芯深度荷载—沉降、桩侧摩阻力分布规律。研究结果表明:在满足承载力要求的情况下,选择合适的钢管插入深度是非常有必要的。(2)采用有限元分析软件Midas,对高压旋喷微型钢管素砼桩(钢管不同插入深度、旋喷桩的厚度、旋喷桩弹性模量)进行模拟计算分析,确定在满足承载力前提下选择合理的插入深度有助于节省经济效益;旋喷桩弹性模量的改变对桩顶沉降影响较小;旋喷桩的桩径在400mm比较合适;数值模拟与实测结果对比分析,验证了有限元数值模拟的科学合理性,揭示插芯组合桩的荷载传递机理,并确定其在荷载作用下的破坏模式。(3)通过改变插芯组合桩的插入深度,研究各参数对插芯组合桩竖向承载特性的影响;基于已有新型组合桩的研究成果提出其抗压承载力计算公式。(4)建立管廊所在区域组合桩加固有限元模型,计算分析加固后的地基的整体沉降变形规律,得出其沉降变形简化计算公式,并据此进行初步工后沉降预测分析。
二、对粉/旋喷搅拌桩加固软弱地基的检测与评价(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、对粉/旋喷搅拌桩加固软弱地基的检测与评价(论文提纲范文)
(1)高压旋喷桩加固岩溶空洞软弱地基的作用机理及应用关键技术研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 研究背景及意义 |
1.1.1 研究背景 |
1.1.2 研究意义 |
1.2 岩溶空洞软弱地基的研究概况 |
1.2.1 岩溶地区空洞的发育机理 |
1.2.2 岩溶空洞软弱地基的的特点 |
1.2.3 岩溶空洞软弱地基的研究现状 |
1.3 地基处理技术国内外研究现状 |
1.3.1 地基处理技术研究进展 |
1.3.2 岩溶空洞软弱地基治理方法 |
1.4 高压旋喷桩地基处理技术的研究进展 |
1.4.1 高压旋喷桩的加固机理 |
1.4.2 高压旋喷桩加固技术的研究及应用现状 |
1.5 本文研究内容 |
2 岩溶空洞软弱地基稳定性的分析与评价 |
2.1 岩溶空洞软弱地基稳定性的影响因素和分析方法 |
2.1.1 稳定性的影响因素 |
2.1.2 稳定性的分析方法 |
2.2 广州某典型岩溶发育场地的地质环境条件 |
2.2.1 场地工程地质概况 |
2.2.2 场地分析与评价 |
2.2.3 场地地基基础选型 |
2.3 依托工程岩溶空洞软弱地基的稳定性评价 |
2.3.1 场地稳定性的定性评价 |
2.3.2 场地稳定性的半定量评价 |
2.4 依托工程岩溶空洞软弱地基稳定性模糊综合评价 |
2.4.1 模糊综合评价法的基本原理 |
2.4.2 稳定性模糊综合评价结果 |
2.5 本章小结 |
3 高压旋喷固结体的室内配合比试验及微观结构分析 |
3.1 原状土样土工试验 |
3.1.1 密度和含水率测试 |
3.1.2 液限和塑限测试 |
3.1.3 土的固结试验 |
3.1.4 土的直剪试验 |
3.2 原状土样微观结构分析 |
3.2.1 XRD射线物相分析 |
3.2.2 光学显微分析 |
3.2.3 电镜扫描分析 |
3.3 高压旋喷固结体的室内配合比试验 |
3.3.1 高压旋喷固结体配合比设计及制作养护 |
3.3.2 无侧限抗压强度试验现象 |
3.3.3 无侧限抗压强度试验结果分析 |
3.4 高压旋喷固结体的电镜扫描分析 |
3.5 本章小结 |
4 高压旋喷桩在岩溶空洞软弱地基加固中的应用 |
4.1 高压旋喷桩加固岩溶空洞软弱地基的方案设计 |
4.1.1 39#地块软弱地基状况 |
4.1.2 39#地块软弱地基处理设计 |
4.1.3 施工技术参数设计 |
4.2 高压旋喷桩加固岩溶空洞软弱地基的关键技术 |
4.2.1 准备工作 |
4.2.2 高压旋喷桩施工 |
4.2.3 引孔和旋喷工程的质量保证措施 |
4.2.4 高压旋喷桩施工应急预案 |
4.3 岩溶空洞软弱地基处理效果检验 |
4.3.1 水泥浆液固结体检验 |
4.3.2 钻孔取芯检验 |
4.3.3 土常规试验检验 |
4.3.4 物探勘查检验 |
4.4 本章小结 |
5 高压旋喷桩加固岩溶空洞软弱地基的工艺设计 |
5.1 高压旋喷桩加固岩溶空洞软弱地基的工艺流程 |
5.1.1 岩溶空洞软弱地基的稳定性评价 |
5.1.2 旋喷浆液配比设计 |
5.1.3 施工关键技术 |
5.1.4 岩溶空洞软弱地基处理效果检验 |
5.2 高压旋喷桩加固岩溶空洞软弱地基的施工工艺设计 |
6 结论与展望 |
6.1 主要结论 |
6.2 工作展望 |
致谢 |
参考文献 |
附录 |
附录1:本人发表的学术论文 |
附录2:本人申请的国家发明专利 |
附录3:攻读硕士学位期间参与的科研项目 |
附录4:攻读硕士学位期间参加的学术会议 |
(2)中国路基工程学术研究综述·2021(论文提纲范文)
索 引 |
0 引 言(长沙理工大学张军辉老师、郑健龙院士提供初稿) |
1 地基处理新技术(山东大学崔新壮老师、重庆大学周航老师提供初稿) |
1.1 软土地基处理 |
1.1.1 复合地基处理新技术 |
1.1.2 排水固结地基处理新技术 |
1.2 粉土地基 |
1.3 黄土地基 |
1.4 饱和粉砂地基 |
1.4.1 强夯法地基处理技术新进展 |
1.4.2 高真空击密法地理处理技术 |
1.4.3 振冲法地基处理技术 |
1.4.4 微生物加固饱和粉砂地基新技术 |
1.5 其他地基 |
1.5.1 冻土地基 |
1.5.2 珊瑚礁地基 |
1.6 发展展望 |
2 路堤填料的工程特性(东南大学蔡国军老师、中南大学肖源杰老师、长安大学张莎莎老师提供初稿) |
2.1 特殊土 |
2.1.1 膨胀土 |
2.1.2 黄 土 |
2.1.3 盐渍土 |
2.2 黏土岩 |
2.2.1 黏 土 |
2.2.2 泥 岩 |
(1)粉砂质泥岩 |
(2) 炭质泥岩 |
(3)红层泥岩 |
(4)黏土泥岩 |
2.2.3 炭质页岩 |
2.3 粗粒土 |
2.4 发展展望 |
3 多场耦合作用下路堤结构性能演变规律(长沙理工大学张军辉老师、中科院武汉岩土所卢正老师提供初稿) |
3.1 路堤材料性能 |
3.2 路堤结构性能 |
3.3 发展展望 |
4 路堑边坡稳定性分析(长沙理工大学曾铃老师、重庆大学肖杨老师、长安大学晏长根老师提供初稿) |
4.1 试验研究 |
4.1.1 室内试验研究 |
4.1.2 模型试验研究 |
4.1.3 现场试验研究 |
4.2 理论研究 |
4.2.1 定性分析法 |
4.2.2 定量分析法 |
4.2.3 不确定性分析法 |
4.3 数值模拟方法研究 |
4.3.1 有限元法 |
4.3.2 离散单元法 |
4.3.3 有限差分法 |
4.4 发展展望 |
5 路基防护与支挡(河海大学孔纲强老师、长沙理工大学张锐老师提供初稿) |
5.1 坡面防护 |
5.2 挡土墙 |
5.2.1 传统挡土墙 |
5.2.2 加筋挡土墙 |
5.2.3 土工袋挡土墙 |
5.3 边坡锚固 |
5.3.1 锚杆支护 |
5.3.2 锚索支护 |
5.4 土钉支护 |
5.5 抗滑桩 |
5.6 发展展望 |
策划与实施 |
(3)整体碳化加固法处理浅层软弱地基试验研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 浅层软弱地基加固方法研究 |
1.2.2 就地搅拌技术研究现状 |
1.2.3 MgO碳化加固技术研究现状 |
1.2.4 加固效果检验 |
1.3 现存问题 |
1.4 研究内容 |
1.5 技术路线 |
第二章 整体碳化法加固浅层软弱地基的现场试验研究 |
2.1 场地概况及试验材料 |
2.1.1 场地概况 |
2.1.2 试验材料 |
2.2 双向整体搅拌设备 |
2.2.1 双向整体搅拌设备的研发 |
2.2.2 双向整体搅拌系统的工作流程 |
2.3 整体碳化设备 |
2.4 整体碳化法加固浅层软弱地基单点试验 |
2.4.1 单点试验方案 |
2.4.2 单点试验温度和动力触探结果 |
2.4.3 试验参数的确立 |
2.5 整体碳化法加固浅层软弱地基试验流程 |
2.6 加固效果检测方法 |
2.6.1 原位测试方法 |
2.6.2 长期质量监测方法 |
2.7 本章小结 |
第三章 氧化镁整体碳化法加固浅层软弱地基的固化效果评价 |
3.1 测试方法 |
3.2 地基动回弹特性 |
3.2.1 测点布控 |
3.2.2 水泥、石灰对照区动回弹特性 |
3.2.3 碳化区动回弹特性 |
3.2.4 整体回弹特性评价 |
3.3 地基承载力特性 |
3.3.1 水泥、石灰对照区地基承载力特性 |
3.3.2 碳化区地基承载力特性 |
3.3.3 场地整体地基承载力评价 |
3.4 路基填筑过程中的沉降观测 |
3.4.1 观测点布置 |
3.4.2 沉降分析 |
3.5 路基荷载下土压力监测 |
3.5.1 观测点布置 |
3.5.2 路基荷载下土压力分析 |
3.6 本章小结 |
第四章 整体碳化法加固浅层软弱地基的质量控制和效益评价 |
4.1 质量控制措施 |
4.1.1 施工参数控制 |
4.1.2 质量检测标准与方法 |
4.2 碳化时间的控制 |
4.2.1 碳化时间与动回弹模量关系分析 |
4.2.2 碳化时间与地基承载力关系分析 |
4.3 通气管距的控制 |
4.3.1 通气管距与动回弹模量关系分析 |
4.3.2 通气管距与地基承载力关系分析 |
4.4 氧化镁整体碳化加固技术的效益评价分析 |
4.4.1 经济效益分析 |
4.4.2 环境效益 |
4.4.3 社会效益 |
4.5 本章小结 |
第五章 结论与展望 |
5.1 主要结论 |
5.2 工作展望 |
致谢 |
参考文献 |
作者简介 |
(4)水泥土搅拌桩对湿陷性黄土地基的加固效果研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景及意义 |
1.1.1 研究背景 |
1.1.2 研究意义 |
1.2 国内外研究现状 |
1.2.1 国外研究现状分析 |
1.2.2 国内研究现状分析 |
1.3 研究内容及方法 |
2 复合地基基本理论概述 |
2.1 复合地基简介 |
2.1.1 复合地基的概念及分类 |
2.1.2 复合地基的效用 |
2.1.3 桩式复合地基加固机理 |
2.2 搅拌桩复合地基特性 |
2.2.1 构成桩式复合地基的条件 |
2.2.2 水泥土搅拌桩复合地基承载力特性 |
2.2.3 水泥土搅拌桩复合地基沉降特性 |
2.3 水泥土搅拌桩复合地基破坏方式分析 |
3 太焦铁路太谷段黄土特性研究 |
3.1 湿陷性黄土物理力学特性 |
3.1.1 黄土的概念 |
3.1.2 湿陷性黄土的物理力学特性 |
3.2 黄土的湿陷性分析 |
3.2.1 黄土湿陷性的测定办法 |
3.2.2 黄土湿陷类型的判定 |
3.2.3 太焦铁路太谷段湿陷性黄土的分布情况 |
3.2.4 太焦铁路太谷段湿陷性黄土样本分析 |
4 水泥土搅拌桩复合地基加固效果分析 |
4.1 水泥土搅拌桩复合地基承载力特性分析 |
4.1.1 水泥土搅拌桩试桩试验实地检测 |
4.1.2 水泥土搅拌桩复合地基理论计算 |
4.1.3 水泥土搅拌桩复合地基数值模拟计算 |
4.1.4 水泥土搅拌桩复合地基静载荷试验计算结果对比分析 |
4.2 水泥土搅拌桩复合地基沉降特性分析 |
4.2.1 水泥土搅拌桩地基现场沉降监测 |
4.2.2 水泥土搅拌桩地基沉降理论计算 |
4.2.3 水泥土搅拌桩地基沉降数值模拟计算 |
4.2.4 水泥土搅拌桩复合地基沉降计算结果对比分析 |
结论 |
致谢 |
参考文献 |
(5)乐海围垦区道路网软土地基处理方法研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究目的和意义 |
1.2 软土与软土地基处理 |
1.3 国内外研究现状 |
1.4 论文研究内容 |
1.5 技术路线 |
2 软土特征及常用软土地基处理方法 |
2.1 软土特征 |
2.1.1 软土地基的鉴别 |
2.1.2 软土的工程性质 |
2.2 处理目的 |
2.3 常用软土地基处理方法 |
2.3.1 化学加固法 |
2.3.2 减轻荷载法 |
2.3.3 换填法 |
2.3.4 排水固结法 |
2.3.5 注浆加固法 |
2.3.6 高压旋喷桩 |
2.3.7 复合地基法 |
2.3.8 水泥搅拌桩法 |
2.3.9 CFG桩法 |
2.3.10 强夯法及低能量强夯法 |
2.4 本章小结 |
3 温州市乐海围垦区道路网工程项目概况 |
3.1 项目背景及地理位置 |
3.2 项目建设必要性与意义 |
3.2.1 项目建设的必要性 |
3.2.2 工程意义 |
3.3 交通设施现状与规划 |
3.4 沿线环境敏感区分布对项目建设的影响 |
3.5 项目区域内其他运输方式对项目的影响 |
3.6 沿线自然地理概况 |
3.6.1 气象条件 |
3.6.2 水文地质条件 |
3.7 工程地质条件 |
3.8 地基土分析与评价 |
3.9 道路技术标准 |
3.9.1 道路设计标准 |
3.9.2 桥涵设计标准 |
3.10 本章小结 |
4 温州市乐海围垦区道路网项目地基处理方法研究 |
4.1 地基处理方法适用性分析 |
4.2 地基分区域处理方案 |
4.3 吹砂区域地基处理要点 |
4.3.1 水泥土搅拌桩处理要点 |
4.3.2 高压旋喷桩处理要点 |
4.3.3 泡沫混凝土处理要点 |
4.4 主次要区域低能强夯法施工要点 |
4.4.1 低能量强夯施工要点 |
4.4.2 低能量强夯检测验收 |
4.4.3 乐海围垦区道路网低能量强夯注意事项 |
4.5 路基处理施工要求 |
4.5.1 路基填筑与压实度要求 |
4.5.2 雨天施工措施 |
4.5.3 保质保量措施 |
4.6 本章小结 |
5 低能量强夯法数值模拟及现场试验研究 |
5.1 强夯法加固机理及关键指标分析 |
5.1.1 强夯法加固机理 |
5.1.2 强夯法关键指标分析 |
5.2 有限元数值模拟 |
5.2.1 模型建立理论基础 |
5.2.2 有限元模型的建立 |
5.3 夯击能对有效加固深度的影响 |
5.4 低能强夯法现场处理效果 |
5.5 本章小结 |
6 结论与展望 |
6.1 结论 |
6.2 展望 |
致谢 |
参考文献 |
(6)串联式组合桩复合地基承载机理及其设计计算方法研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 复合地基概述 |
1.1.1 复合地基的概念 |
1.1.2 复合地基的分类 |
1.1.3 复合地基的特点 |
1.2 组合型复合地基的应用与发展概况 |
1.2.1 双向增强复合地基的应用与发展概况 |
1.2.2 组合桩型复合地基的应用与发展概况 |
1.3 组合型复合地基的研究现状 |
1.3.1 组合型复合地基承载机理研究现状 |
1.3.2 组合型复合地基承载力计算方法研究现状 |
1.3.3 组合型复合地基沉降变形计算方法研究现状 |
1.3.4 组合型复合地基研究现状的评述 |
1.4 研究内容 |
第2章 串联式组合桩复合地基结构及其工程特性 |
2.1 概述 |
2.2 复合地基组成材料的工程特性 |
2.2.1 基体材料的工程特性 |
2.2.2 增强体的工程特性 |
2.3 串联式组合桩的组成及其结构设计 |
2.3.1 设计背景与启发 |
2.3.2 桩体结构设计 |
2.4 串联式组合桩复合地基的施工技术与方法 |
2.4.1 施工前的准备工作 |
2.4.2 成桩工艺及施工参数 |
2.4.3 施工中应注意的问题 |
本章小结 |
第3章 串联式组合桩复合地基承载机理研究 |
3.1 概述 |
3.2 串联式组合桩复合地基荷载传递机理 |
3.2.1 桩体荷载传递机理 |
3.2.2 桩土体系的荷载传递机理 |
3.2.3 串联式组合桩荷载传递机理 |
3.3 串联式组合桩的力学模型 |
3.3.1 基本假定 |
3.3.2 荷载传递函数 |
3.3.3 力学计算模型 |
3.3.4 微分控制方程的建立与求解 |
3.4 影响串联式组合桩复合地基主要受力变形的因素 |
本章小结 |
第4章 串联式组合桩复合地基的受力变形分析 |
4.1 概述 |
4.2 复合地基受力变形分析的基本方法 |
4.2.1 复合地基承载力计算基本方法 |
4.2.2 复合地基沉降计算基本方法 |
4.3 基于滑块破坏理论的串联式组合桩复合地基承载力计算方法 |
4.3.1 滑块平衡法原理 |
4.3.2 极限承载力计算模型 |
4.3.3 极限承载力计算 |
4.4 考虑滑移与鼓胀变形的串联式组合桩复合地基沉降计算方法 |
4.4.1 沉降计算模型 |
4.4.2 加固区土层压缩变形量计算 |
4.4.3 下卧层土层压缩量计算 |
4.4.4 确定相关计算参数的方法 |
4.5 基于改进应变楔模型的串联式组合桩复合地基沉降计算方法 |
4.5.1 应变楔模型 |
4.5.2 沉降变形计算 |
4.5.3 相关参数的取值 |
4.6 计算实例分析 |
本章小结 |
第5章 串联式组合桩复合地基参数敏感性分析 |
5.1 概述 |
5.2 离散-连续耦合理论 |
5.2.1 离散颗粒与连续单元的接触传递作用 |
5.2.2 离散颗粒与连续单元的耦合计算理论 |
5.3 PFC-FLAC耦合数值计算模型 |
5.3.1 数值计算模型 |
5.3.2 本构模型 |
5.3.3 计算参数 |
5.3.4 数值模拟软件的耦合计算实现 |
5.3.5 数值计算模型可靠性验证 |
5.4 褥垫层参数对串联式组合桩复合地基承载特性的影响 |
5.4.1 褥垫层厚度对串联式组合桩复合地基承载特性的影响 |
5.4.2 褥垫层模量对串联式组合桩复合地基承载特性的影响 |
5.5 桩段参数对串联式组合桩复合地基承载特性的影响 |
5.5.1 桩段长度对串联式组合桩复合地基承载特性的影响 |
5.5.2 桩段模量对串联式组合桩复合地基承载特性的影响 |
5.6 桩直径对串联式组合桩复合地基承载特性的影响 |
5.7 桩间距对串联式组合桩复合地基承载特性的影响分析 |
5.8 土体模量对串联式组合桩复合地基承载特性的影响分析 |
5.8.1 加固层土体模量对串联式组合桩复合地基承载特性的影响 |
5.8.2 下卧层土体模量对串联式组合桩复合地基承载特性的影响 |
本章小结 |
第6章 串联式组合桩复合地基设计与工程应用研究 |
6.1 概述 |
6.2 工程基本概况 |
6.2.1 项目概况 |
6.2.2 工程地质条件 |
6.2.3 水文地质条件 |
6.3 串联式组合桩复合地基的设计方案 |
6.3.1 设计原则 |
6.3.2 技术标准 |
6.3.3 设计参数 |
6.4 现场试验 |
6.4.1 单桩竖向承载力试验 |
6.4.2 复合地基承载力试验 |
6.5 工程应用效果分析 |
本章小结 |
结论与展望 |
参考文献 |
致谢 |
附录 A(攻读学位期间发表的学术论文和参与科研项目) |
(7)旋喷搅拌桩在高速铁路软基处理中的应用研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 国内外研究现状 |
1.2.1 旋喷搅拌桩应用 |
1.2.2 刚性桩和柔性桩对比 |
1.2.3 旋喷搅拌桩设计计算方法研究现状 |
1.3 存在的问题 |
1.4 本文研究内容及技术路线 |
1.4.1 主要研究内容 |
1.4.2 研究技术路线 |
第二章 旋喷搅拌桩施工技术 |
2.1 旋喷搅拌桩施工工艺 |
2.1.1 施工工艺流程 |
2.1.2 施工步骤与方法 |
2.2 旋喷搅拌桩施工技术参数 |
2.3 旋喷搅拌桩质量检验方法 |
2.4 旋喷搅拌桩经济性分析 |
2.5 本章小结 |
第三章 旋喷搅拌桩加固高铁软基现场试验 |
3.1 工程概况 |
3.1.1 工程概况 |
3.1.2 工程地质条件 |
3.2 现场试验监测方案 |
3.2.1 监测方案 |
3.2.2 监测仪器 |
3.2.3 仪器埋设 |
3.3 旋喷搅拌桩加固软基效果分析 |
3.3.1 取芯及载荷试验结果 |
3.3.2 桩土荷载分担 |
3.3.3 孔隙水压力 |
3.3.4 地表沉降 |
3.3.5 深层水平位移 |
3.4 本章小结 |
第四章 旋喷搅拌桩加固软基性状的数值模拟 |
4.1 数值分析模型建立与验证 |
4.1.1 数值分析模型与计算参数 |
4.1.2 模型验证 |
4.2 桩身强度对加固软基性状的影响分析 |
4.2.1 地基沉降 |
4.2.2 桩土差异沉降 |
4.2.3 桩土应力比 |
4.2.4 深层水平位移 |
4.2.5 孔隙水压力 |
4.3 本章小结 |
第五章 旋喷搅拌桩加固软土地基实用计算方法 |
5.1 设计思路 |
5.2 设计流程 |
5.3 设计案例计算 |
5.4 本章小结 |
第六章 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
作者简介 |
致谢 |
(8)多向加芯搅拌桩在丰南钢厂软基处理工程中的应用研究(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 选题背景及研究意义 |
1.1.1 选题背景 |
1.1.2 研究意义 |
1.2 国内外研究现状 |
1.2.1 软土工程特性 |
1.2.2 软土地基与桩基技术 |
1.2.3 多向加芯搅拌桩 |
1.2.4 桩基承载变形机理 |
1.2.5 研究现状综述 |
1.3 研究目标与研究内容 |
1.3.1 研究目标 |
1.3.2 研究内容 |
1.4 研究方法与技术路线 |
1.4.1 研究方法 |
1.4.2 研究技术路线 |
2 项目区较土工程特征及地基处理要求 |
2.1 项目区地质概况 |
2.1.1 地理位置及地形地貌 |
2.1.2 气候条件 |
2.1.3 地层岩性 |
2.1.4 地下水 |
2.1.5 场地稳定性及地震效应 |
2.1.6 不良地质作用及不利埋藏物 |
2.2 软土基本物理性质 |
2.3 软土变形及强度特性 |
2.4 项目区地基处理要求 |
3 项目区软土地基处理方案比选 |
3.1 软土地基处理技术概述 |
3.2 高压旋喷桩法 |
3.3 水泥土搅拌桩 |
3.4 预应力管桩 |
3.5 多向加芯搅拌桩 |
3.6 丰南钢厂软土地基最佳处理方案 |
3.7 本章小结 |
4 多向加芯搅拌桩设计与工程质量 |
4.1 单桩设计 |
4.2 承载力计算 |
4.3 群桩设计 |
4.4 施工工艺 |
4.4.1 施工设备 |
4.4.2 芯桩预制 |
4.4.3 工艺流程 |
4.4.4 操作要点 |
4.5 工程质量检测 |
4.5.1 低应变动力检测 |
4.5.2 单桩竖向抗压静载荷试验 |
4.6 影响工程质量的关键技术 |
4.6.1 水泥土外桩施工 |
4.6.2 混凝土内芯插入 |
4.7 本章小结 |
5 单桩工程性状分析及技术参数优化 |
5.1 有限元模型概述 |
5.2 单桩静载试验的数值模拟 |
5.3 桩身内外芯及桩周土荷载的数值模拟 |
5.4 单桩沉降影响因素 |
5.5 承载力组成 |
5.6 关键技术参数的优化 |
5.6.1 内外芯长比 |
5.6.2 截面含芯率 |
5.6.3 桩身掺灰量 |
5.7 本章小结 |
6 群桩破坏模式与群桩效应的影响因素 |
6.1 群桩破坏模式 |
6.1.1 群桩侧阻破坏模式 |
6.1.2 群桩端阻破坏模式 |
6.2 群桩效应的影响因素 |
6.2.1 桩距影响 |
6.2.2 承台影响 |
6.3 群桩基础有限元模型 |
6.4 数值模拟结果 |
6.4.1 桩距影响 |
6.4.2 承台荷载分析 |
6.4.3 桩长影响 |
6.5 本章小结 |
7 结论与展望 |
7.1 主要结论 |
7.2 展望 |
致谢 |
参考文献 |
附录 |
(9)基于透气管桩的碳化复合桩试验与工艺研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 研究现状 |
1.2.1 MgO碳化固化法的研究进展 |
1.2.2 透水混凝土研究进展 |
1.3 存在问题分析 |
1.4 本文研究内容及技术路线 |
1.4.1 研究内容 |
1.4.2 技术路线 |
第二章 活性MgO碳化固化土的渗透特性研究 |
2.1 试验材料和方法 |
2.1.1 试验材料 |
2.1.2 试验方案和方法 |
2.1.3 渗透系数计算 |
2.2 试验结果与分析 |
2.2.1 固化剂掺量的影响 |
2.2.2 碳化时间的影响 |
2.2.3 初始含水率的影响 |
2.2.4 碳化通气压力的影响 |
2.3 讨论 |
2.4 本章小结 |
第三章 碳化复合桩土体的力学特性试验 |
3.1 试验材料和方法 |
3.1.1 试验材料 |
3.1.2 试验方案与方法 |
3.2 试验结果与分析 |
3.2.1 碳化时间对透气桩外侧碳化效果的影响 |
3.2.2 碳化通气压力对透气桩外侧碳化效果的影响 |
3.2.3 粉土中距离对碳化效果影响 |
3.2.4 粉质黏土中距离对碳化效果影响 |
3.2.5 碳化对透气管桩强度影响 |
3.3 本章小结 |
第四章 碳化复合桩整体碳化模型试验 |
4.1 试验材料和方法 |
4.1.1 试验材料 |
4.1.2 模型设计 |
4.1.3 试验方案与方法 |
4.1.4 测试内容 |
4.2 试验结果与分析 |
4.2.1 水化温度变化分析 |
4.2.2 透气管桩碳化深度影响研究 |
4.2.3 透气管桩碳化粉土影响距离研究 |
4.2.4 透气管桩碳化淤泥质土影响距离研究 |
4.3 本章小结 |
第五章 单点试验与施工工艺初步研究 |
5.1 施工前期准备 |
5.1.1 待处理场地勘察与预处 |
5.1.2 施工材料与设备筹备 |
5.2 单点试验 |
5.2.1 单点试验基本设置 |
5.2.2 温度检测结果 |
5.2.3 动力触探与动回弹模量试验分析 |
5.2.4 透气管桩碳化过程描述 |
5.3 施工工艺流程 |
5.4 本章小结 |
第六章 结论与展望 |
6.1 主要结论 |
6.2 本文不足与展望 |
参考文献 |
致谢 |
攻读硕士期间发表的论文及专利 |
(10)软土填石地基插芯组合桩承载特性及应用研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 课题研究背景及意义 |
1.1.1 课题研究背景 |
1.1.2 课题研究意义 |
1.2 国内外研究现状 |
1.2.1 既有建筑物地基加固处理研究现状 |
1.2.2 插芯组合桩加固技术国内外研究现状 |
1.3 论文主要研究内容及技术路线 |
1.3.1 论文主要研究内容 |
1.3.2 论文技术路线 |
第二章 插芯组合桩承载特性理论分析 |
2.1 概述 |
2.2 普通桩基理论 |
2.2.1 竖向抗压桩的荷载传递机理 |
2.2.2 竖向抗压桩的桩基沉降计算 |
2.3 变截面桩基理论分析 |
2.3.1 变截面桩的荷载传递机理 |
2.3.2 变截面桩的竖向承载特性研究 |
2.4 插芯组合桩桩基理论分析 |
2.4.1 插芯组合桩的荷载传递机理 |
2.4.2 插芯组合桩的承载力计算 |
2.5 小结 |
第三章 插芯组合桩加固技术工程应用背景 |
3.1 工程应用背景 |
3.1.1 地质资料 |
3.1.2 地层分布 |
3.1.3 工程现场灾害情况 |
3.2 插芯组合桩加固设计方案 |
3.3 插芯桩体现场加固施工关键技术 |
3.3.1 加固原理 |
3.3.2 现场施工技术方案及措施 |
3.3.3 实际工程应用案列 |
3.3.4 插芯组合桩破坏模式及承载力的计算分析 |
3.4 小结 |
第四章 现场载荷试验结果分析 |
4.1 现场试验研究 |
4.1.1 试验目的 |
4.1.2 检测数量 |
4.1.3 试验加载装置 |
4.1.4 试验加载方法和沉降观测 |
4.1.5 受检桩情况 |
4.1.6 试验结果及分析 |
4.2 加固区工后沉降的自动化监测结果及分析 |
4.2.1 监测目的 |
4.2.2 监测方法和原理 |
4.2.3 监测设备 |
4.2.4 测点布置 |
4.2.5 数据反馈 |
4.2.6 沉降稳定性评价原则 |
4.2.7 沉降稳定性评价方法 |
4.2.8 管廊稳定性评价分析 |
4.3 小结 |
第五章 插芯桩承载和变形特性数值模拟分析 |
5.1 Midas gts-nx软件简介 |
5.1.1 Midas gts-nx软件的特点 |
5.2 单桩承载力数值计算 |
5.2.1 确定土体本构模型及其参数 |
5.2.2 单元选取和网格划分 |
5.2.3 边界及荷载条件 |
5.2.4 计算结果对比分析 |
5.3 基于GTS-NX软件的插芯组合桩受力因素分析 |
5.3.1 高压旋喷桩弹性模量变化影响 |
5.3.2 高压旋喷桩厚度变化影响 |
5.3.3 钢管桩插入深度变化影响 |
5.3.4 桩土荷载分担比 |
5.4 管廊下多桩基础整体加固处理数值模拟计算及影响因素分析 |
5.4.1 不同桩间距插芯组合桩及土体沉降 |
5.4.2 加固区附近土体沉降 |
5.4.3 加固后整体沉降分析 |
5.5 小结 |
第六章 结论与展望 |
6.1 主要结论 |
6.2 进一步研究展望 |
参考文献 |
致谢 |
四、对粉/旋喷搅拌桩加固软弱地基的检测与评价(论文参考文献)
- [1]高压旋喷桩加固岩溶空洞软弱地基的作用机理及应用关键技术研究[D]. 商治. 西安建筑科技大学, 2021(01)
- [2]中国路基工程学术研究综述·2021[J]. Editorial Department of China Journal of Highway and Transport;. 中国公路学报, 2021(03)
- [3]整体碳化加固法处理浅层软弱地基试验研究[D]. 钱星辰. 东南大学, 2020(01)
- [4]水泥土搅拌桩对湿陷性黄土地基的加固效果研究[D]. 贾超. 兰州交通大学, 2020(01)
- [5]乐海围垦区道路网软土地基处理方法研究[D]. 谢卫红. 兰州交通大学, 2019(01)
- [6]串联式组合桩复合地基承载机理及其设计计算方法研究[D]. 郭尤林. 湖南大学, 2019
- [7]旋喷搅拌桩在高速铁路软基处理中的应用研究[D]. 孙哲. 东南大学, 2019(01)
- [8]多向加芯搅拌桩在丰南钢厂软基处理工程中的应用研究[D]. 刘鹏程. 西安科技大学, 2019(01)
- [9]基于透气管桩的碳化复合桩试验与工艺研究[D]. 王亮. 东南大学, 2019(05)
- [10]软土填石地基插芯组合桩承载特性及应用研究[D]. 骆干. 广州大学, 2019(01)